Respuesta :

[tex]\frac{dz}{dt} + e^{t + z} = 0 \ \Rightarrow\ \frac{dz}{dt} = - e^{t + z} \ \Rightarrow\ \frac{dz}{dt} = - e^{t}e^z \ \Rightarrow\ \\ \\ \frac{dz}{e^z} = -e^{t} dt \ \Rightarrow\ \int e^{-z} dz=\int -e^{t} dt \ \Rightarrow\ \\ \\ -e^{-z} = -e^{t} + C \ \Rightarrow\ e^{-z} = e^{t} - C \ \Rightarrow\ -z = \ln(e^{t} - C)\ \Rightarrow\ \\ \\ z = -\ln(e^{t} - C) [/tex]

By solving given differential equation, Solution is [tex]z=-ln(e^{t}-C)[/tex]

What is a differential equation?

A differential equation is an equation that contains at least one derivative of an unknown function, either an ordinary derivative or a partial derivative.

Given differential equation

[tex]\frac{dz}{dt}+e^{t+z} = 0[/tex]

⇒ [tex]\frac{dz}{dt} = -e^{t+z}[/tex]

⇒ [tex]\frac{dz}{dt}=-e^{t}e^{z}[/tex]

⇒ [tex]\frac{dz}{e^{z} }= -e^{t} dt[/tex]

Apply integration on both sides

⇒ ∫[tex]e^{-z} dz=[/tex] ∫ [tex]-e^{-t} dt[/tex]

⇒ [tex]-e^{-z}=- e^{t} +C[/tex]

[tex]e^{-z}=e^{t} -C[/tex]

⇒ [tex]-z = ln(e^{t} -C)[/tex]

⇒ [tex]z=-ln(e^{t}-C)[/tex]

By solving given differential equation, Solution is [tex]z=-ln(e^{t}-C)[/tex]

Find out more information about differential equation here

https://brainly.com/question/16663279

#SPJ3