Respuesta :
[tex]\displaystyle\frac{dr}{dt} + 2tr = r\ \Rightarrow\ \frac{dr}{dt} = r - 2tr\ \Rightarrow\ \frac{dr}{dt} = r(1 - 2t) \ \Rightarrow \\ \\
\frac{dr}{r} = (1 - 2t)\, dt\ \Rightarrow \int \frac{dr}{r} = \int(1 - 2t) \, dt\ \Rightarrow\ \ln|r| = t - t^2 + C. \\ \\
|r| = e^{t - t^2 + C} = ke^{t - t^2}.\ \text{Since } r(0) = 5, 5 = ke^0 = k. \\ \\
\text{Thus, } r(t) = 5e^{t - t^2}.[/tex]
The solution to given initial value problem [tex]\frac{dr}{dt}+2tr=r[/tex] , r(0) = 5 is [tex]r=5.e^{t-t^2}[/tex]
What is initial value problem?
"It is a differential equation with some initial conditions."
What is differential equation?
"An equation with one or more derivatives of a function"
For given question,
We have been given a differential equation dr/dt + 2tr = r, and initial condition r(0) = 5
We need to solve given initial-value problem.
Consider given differential equation,
[tex]\Rightarrow \frac{dr}{dt}+2tr=r\\\\\Rightarrow \frac{dr}{dt}=r-2tr\\\\\Rightarrow \frac{dr}{dt}=r(1-2t)\\\\\Rightarrow \frac{dr}{r}=(1-2t)dt\\\\\Rightarrow \int \frac{dr}{r} \, = \int (1-2t) dt \\\\\Rightarrow ln~r=t-t^2+c\\\\\Rightarrow r=e^{t-t^2+c}\\\\\Rightarrow r=e^c.e^{t-t^2}\\\\\Rightarrow r=m.e^{t-t^2}[/tex]
So, the general solution to given differential equation dr/dt + 2tr = r is,
[tex]r=m.e^{t-t^2}[/tex]
From the initial condition r(0) = 5,
for t = 0, r = 5
[tex]\Rightarrow 5=m.e^{0-0^2}\\\\\Rightarrow 5=m.1\\\\\Rightarrow m=5[/tex]
This means, the particular solution to given differential equation is [tex]r=5.e^{t-t^2}[/tex]
Therefore, the solution to given initial value problem [tex]\frac{dr}{dt}+2tr=r[/tex] , r(0) = 5 is [tex]r=5.e^{t-t^2}[/tex]
Learn more about the initial value problem here:
https://brainly.com/question/8736446
#SPJ2