Respuesta :

[tex]\displaystyle\frac{dr}{dt} + 2tr = r\ \Rightarrow\ \frac{dr}{dt} = r - 2tr\ \Rightarrow\ \frac{dr}{dt} = r(1 - 2t) \ \Rightarrow \\ \\ \frac{dr}{r} = (1 - 2t)\, dt\ \Rightarrow \int \frac{dr}{r} = \int(1 - 2t) \, dt\ \Rightarrow\ \ln|r| = t - t^2 + C. \\ \\ |r| = e^{t - t^2 + C} = ke^{t - t^2}.\ \text{Since } r(0) = 5, 5 = ke^0 = k. \\ \\ \text{Thus, } r(t) = 5e^{t - t^2}.[/tex]

The solution to given initial value problem [tex]\frac{dr}{dt}+2tr=r[/tex] , r(0) = 5 is [tex]r=5.e^{t-t^2}[/tex]

What is initial value problem?

"It is a differential equation with some initial conditions."

What is differential equation?

"An equation with one or more derivatives of a function"

For given question,

We have been given a differential equation dr/dt + 2tr = r, and initial condition r(0) = 5

We need to solve given initial-value problem.

Consider given differential equation,

[tex]\Rightarrow \frac{dr}{dt}+2tr=r\\\\\Rightarrow \frac{dr}{dt}=r-2tr\\\\\Rightarrow \frac{dr}{dt}=r(1-2t)\\\\\Rightarrow \frac{dr}{r}=(1-2t)dt\\\\\Rightarrow \int \frac{dr}{r} \, = \int (1-2t) dt \\\\\Rightarrow ln~r=t-t^2+c\\\\\Rightarrow r=e^{t-t^2+c}\\\\\Rightarrow r=e^c.e^{t-t^2}\\\\\Rightarrow r=m.e^{t-t^2}[/tex]

So, the general solution to given differential equation dr/dt + 2tr = r is,

[tex]r=m.e^{t-t^2}[/tex]

From the initial condition r(0) = 5,

for t = 0, r = 5

[tex]\Rightarrow 5=m.e^{0-0^2}\\\\\Rightarrow 5=m.1\\\\\Rightarrow m=5[/tex]

This means, the particular solution to given differential equation is  [tex]r=5.e^{t-t^2}[/tex]

Therefore, the solution to given initial value problem [tex]\frac{dr}{dt}+2tr=r[/tex] , r(0) = 5 is [tex]r=5.e^{t-t^2}[/tex]

Learn more about the initial value problem here:

https://brainly.com/question/8736446

#SPJ2

ACCESS MORE