(a) The magnetic force experienced by a charged particle is:
[tex]F=qvB \sin \theta[/tex]
where
q is the charge
v is the velocity of the particle
B is the magnitude of the magnetic field
[tex]\theta[/tex] is the angle between the directions of v and B
The proton in our problem has a charge of [tex]q=1.6 \cdot 10^{-19} C[/tex], and it travels through a magnetic field with strength
[tex]B=2.33 mT=2.33 \cdot 10^{-3} T[/tex]
The direction between its velocity and B is [tex]\theta=27.1 ^{\circ}[/tex], and the force exerted on the proton is [tex]F=6.54 \cdot 10^{-17}N[/tex]. Re-arranging the previous equation and using these data, we can find the value of v:
[tex]v= \frac{F}{qB \sin \theta} = \frac{6.54 \cdot 10^{-17}N}{(1.6 \cdot 10^{-19} C)(2.33 \cdot 10^{-3}T)(\sin 27.1^{\circ})}=3.85 \cdot 10^5 m/s [/tex]
(b) Using the mass of the proton, [tex]m=1.67 \cdot 10^{-27}kg[/tex], we find its kinetic energy:
[tex]K= \frac{1}{2} mv^2= \frac{1}{2}(1.67 \cdot 10^{-27} kg)(3.85 \cdot 10^5 m/s)^2=1.24 \cdot 10^{-16} J [/tex]
And keeping in mind that [tex]1 eV = 1.6 \cdot 10^{-19}J[/tex], we can convert this value into electronvolts:
[tex]K= \frac{1.24 \cdot 10^{-16} J}{1.6 \cdot 10^{-19} J/eV}=775 eV [/tex]