Q5 Q31.) Use the Pythagorean Theorem to find the length of the missing side of the right triangle. Then find the value of each of the six trigonometric functions of theta.

Q5 Q31 Use the Pythagorean Theorem to find the length of the missing side of the right triangle Then find the value of each of the six trigonometric functions o class=

Respuesta :

a^2 + b^2 = c^2

a = sqrt(c^2 - b^2) = sqrt (20^2 - 16^2)

= 12

sin[tex] \theta [/tex] = a/c = 12/20

= 3/5

cos[tex] \theta [/tex] = b/c = 16/20

= 4/5

tan[tex] \theta [/tex] = a/b = 12/16

= 3/4

csc[tex] \pi [/tex] = c/a = 20/12

= 5/3

= 1 2/3

sec[tex] \pi [/tex] = c/b = 20/16

= 5/4

= 1 1/4


The missing side of the right angle triangle is 12 .

The values of each of the six trigonometric ratios are as follows:

sin ∅ = 3 / 5

cos ∅  = 4 / 5

tan ∅  = 3 / 4

csc ∅  = 5 / 3

sec ∅  = 5 / 4

cot ∅ =  4 / 3

using Pythagoras's theorem,

c² = a² + b²

where

c = hypotenuse

a and b are the other legs

Therefore,

20² = a² + 16²

400 - 256 = a²

a² = 144

a = √144

a = 12

using trigonometric ratio,

sin ∅ = opposite / hypotenuse

cos ∅ = adjacent / hypotenuse

tan ∅ = opposite / adjacent

Therefore,

sin ∅ = 12 / 20 = 3 / 5

cos ∅   = 16 /20 = 4 / 5

tan ∅  = 12 / 16 = 3 / 4

csc ∅  = 1 / sin ∅ = 5 / 3

sec ∅  = 1 /  cos ∅ = 5 / 4

cot ∅ = 1 / tan ∅ = 4 / 3

learn more: https://brainly.com/question/22233098?referrer=searchResults

ACCESS MORE