Respuesta :
The given polynomial is
[tex]f(x) = 6x^3 + 25x^2 - 24x + 5[/tex]
By rational root theorem
For a cubic polynomial of the type :
a x³+ b x² + c x + d=0
→ x³ + [tex]\frac{bx^2}{a} + \frac{c x}{a}+\frac{d}{a}=0[/tex]
The possible roots of this polynomial is , [tex]\pm 1, \pm d, \pm \frac{1}{a} , \pm\frac{d}{a}[/tex].
The polynomial f(x) can be written as: [tex]x^3 +\frac{25x^2}{6}-4 x+\frac{5}{6}[/tex]
The possible roots or Zeroes of the polynomial are:
[tex]\pm 1,\pm 3, \pm 5,\pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{5}{2}\pm \frac{5}{3},\pm \frac{5}{6}[/tex]
The values of x for which f(x) =0 , are roots or zeroes of the polynomial.
f(1)= 6 +25 -24+5= 12
f(-1)= -6 +25 +24 +5=48
f(3)=162 +225-72+5≠ 0
f(-3)=-162+225+72+5≠0
[tex]f(\frac{-1}{2}) =\frac{-6}{8}+\frac{25}{4}+12+5=\frac{93}{4}- \frac{6}{8}\neq 0[/tex]
[tex]f(\frac{1}{2}) =\frac{6}{8}+\frac{25}{4}-12+5= 7-7=0[/tex]
[tex]f(\frac{1}{3})=\frac{6}{27}+\frac{25}{9}-8+5=0 \\\\f(\frac{-1}{3})=\frac{-6}{27}+\frac{25}{9}+8+5 \neq 0[/tex]
[tex]f(5)=750 +625-120+5\neq 0\\ f(-5)= -750+625 +120+5=0\\f(\frac{5}{2})=\frac{750}{8}+\frac{625}{4}-60+5\neq 0\\f(\frac{-5}{2})=\frac{-750}{8}+\frac{625}{4}+60+5\neq 0\\\\[/tex]
[tex]f(\frac{5}{3})= \frac{750}{27}+\frac{625}{9}-40+5\neq 0\\\\\\f(\frac{-5}{3})= \frac{-750}{27}+\frac{625}{9}+40+5\neq 0\\\\\\f(\frac{5}{6})= \frac{125}{36}+\frac{625}{36}-20+5\neq 0 \\\\\\\\f(\frac{-5}{6})= \frac{-125}{36}+\frac{625}{36}+20+5\neq 0[/tex]
So , zeroes of f(x) are -5,[tex]\frac{1}{2}[/tex],[tex]\frac{1}{3}[/tex].