Respuesta :

[tex]\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{4y}{x^2}\implies\dfrac{\mathrm dy}y=\dfrac4{x^2}\,\mathrm dx[/tex]

Integrate both sides to get

[tex]\ln|y|=-\dfrac4x+C[/tex]

Given that [tex]y(-4)=e[/tex], we have

[tex]\ln|e|=-\dfrac4{-4}+C\implies C=0[/tex]

so the particular solution is

[tex]\ln|y|=-\dfrac4x\iff y=e^{-4/x}[/tex]

y = e^(-4/x)

................................................................

i took the test so i know this is the answer

................................................................

ACCESS MORE