Respuesta :
[tex]\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{4y}{x^2}\implies\dfrac{\mathrm dy}y=\dfrac4{x^2}\,\mathrm dx[/tex]
Integrate both sides to get
[tex]\ln|y|=-\dfrac4x+C[/tex]
Given that [tex]y(-4)=e[/tex], we have
[tex]\ln|e|=-\dfrac4{-4}+C\implies C=0[/tex]
so the particular solution is
[tex]\ln|y|=-\dfrac4x\iff y=e^{-4/x}[/tex]
Integrate both sides to get
[tex]\ln|y|=-\dfrac4x+C[/tex]
Given that [tex]y(-4)=e[/tex], we have
[tex]\ln|e|=-\dfrac4{-4}+C\implies C=0[/tex]
so the particular solution is
[tex]\ln|y|=-\dfrac4x\iff y=e^{-4/x}[/tex]
y = e^(-4/x)
................................................................
i took the test so i know this is the answer
................................................................