Respuesta :

Answer is 14 7/8. If you want steps, comment on my answer.
Ver imagen sandrikoqoxw40a

Answer:

The weight of third bundle is [tex]\frac{119}{8}=14\frac{7}{8}[/tex]      

Step-by-step explanation:

Given : John has 3 bundles of wood weighing a total of 35 3/4 pounds. Two of the bundles weigh 12 3/8 pounds and 8 1/2 pounds.

To find : How much does the third bundle weigh?

Solution :

Let the third bundle weight be x.

The total weight of 3 bundles of wood is

[tex]35\frac{3}{4}=\frac{143}{4}\text{ pounds}[/tex]

Two of the bundles weigh

[tex]12\frac{3}{8}=\frac{99}{8}\text{ pounds}[/tex]  and

[tex]8\frac{1}{2}=\frac{17}{2}\text{ pounds}[/tex]

Total weight of two bundles is

[tex]\frac{99}{8}+\frac{17}{2}=\frac{99+68}{8}=\frac{167}{8}[/tex]

Total weight = total weight of two bundles + third bundle

[tex]\frac{143}{4}=\frac{167}{8}+x[/tex]

[tex]x=\frac{143}{4}-\frac{167}{8}[/tex]

[tex]x=\frac{143}{4}-\frac{167}{8}[/tex]

[tex]x=\frac{286-167}{8}[/tex]

[tex]x=\frac{119}{8}[/tex]

Therefore, The weight of third bundle is [tex]\frac{119}{8}=14\frac{7}{8}[/tex]

ACCESS MORE