25 POINTS AND BRAINLIEST PLEASE HELP ASAP
Prove: In an isosceles triangle two medians are equal. (fill in the blanks of the equation in the second picture with the correct number/letter/sign based off the first picture.)

25 POINTS AND BRAINLIEST PLEASE HELP ASAP Prove In an isosceles triangle two medians are equal fill in the blanks of the equation in the second picture with the class=
25 POINTS AND BRAINLIEST PLEASE HELP ASAP Prove In an isosceles triangle two medians are equal fill in the blanks of the equation in the second picture with the class=

Respuesta :

M is a midpoint of BC so:

[tex]M=\left(\dfrac{\boxed{2}\boxed{a}+a}{\boxed{2}},\dfrac{\boxed{0}+b}{2}\right)=\left(\dfrac{\boxed{3}\boxed{a}}{\boxed{2}},\dfrac{\boxed{b}}{\boxed{2}}\right)[/tex]

Length of MA:

[tex]MA=\sqrt{\left(\dfrac{\boxed{3}a}{2}\boxed{-}\boxed{0}\right)^2+\left(\dfrac{\boxed{b}}{2}\boxed{-}\boxed{0}\right)^2}=\\\\\\= \sqrt{\left(\dfrac{\boxed{3}a}{\boxed{2}}\right)^2+\left(\dfrac{b}{2}\right)^2}=\sqrt{\dfrac{\boxed{9}a^2}{\boxed{4}}+\dfrac{\boxed{b}^2}{\boxed{4}}}[/tex]

Length of NB:

[tex]NB=\sqrt{\left(\dfrac{a}{2}\boxed{-}\boxed{2}a\right)^2+\left(\dfrac{b}{2}\boxed{-}\boxed{0}\right)^2}=\\\\\\=\sqrt{\left(\dfrac{a}{2}\boxed{-}\dfrac{\boxed{4}\boxed{a}}{2}\right)^2+\left(\dfrac{b}{2}-\boxed{0}\right)^2}=\\\\\\ \sqrt{\left(\dfrac{-3a}{2}\right)^2+\left(\dfrac{b}{\boxed{2}}\right)^2}=\sqrt{\dfrac{\boxed{9}a^2}{\boxed{4}}+\dfrac{\boxed{b}^2}{\boxed{4}}}[/tex]
RELAXING NOICE
Relax