Respuesta :

Answer:

The correct option is D. The value of given expression is equivalent to [tex]\frac{1}{6}[/tex].

Step-by-step explanation:

The given expression is

[tex]36^{-\frac{1}{2}}[/tex]

[tex]36^{-\frac{1}{2}}=\frac{1}{36^{\frac{1}{2}}}[/tex]              [tex][\because a^{-x}=\frac{1}{a^x}][/tex]

[tex]36^{-\frac{1}{2}}=\frac{1}{\sqrt{36}}[/tex]                        [tex][\because a^{\frac{1}{2}}=\sqrt{a}][/tex]

[tex]36^{-\frac{1}{2}}=\frac{1}{6}[/tex]

Therefore correct option is D. The value of given expression is equivalent to [tex]\frac{1}{6}[/tex].

Answer:

Option D is correct.

[tex]\frac{1}{6}[/tex] is equivalent to [tex](36)^{\frac{-1}{2}}[/tex]

Step-by-step explanation:

Given : [tex](36)^{\frac{-1}{2}}[/tex]

Find the equivalent expression:

Using rule:

  • [tex](a^n)^m= a^{nm}[/tex]
  • [tex]a^{-n} =\frac{1}{a^n}[/tex]

[tex](36)^{\frac{-1}{2}}[/tex]

⇒[tex](6^2)^{\frac{-1}{2})[/tex]

⇒[tex](6)^{2 \times \frac{-1}{2}}[/tex]

⇒[tex]6^{-1}[/tex] = [tex]\frac{1}{6}[/tex]

therefore, the  following equivalent to [tex](36)^{\frac{-1}{2}}[/tex] is, [tex]\frac{1}{6}[/tex]

RELAXING NOICE
Relax