Respuesta :
Answer:
The correct option is D. The value of given expression is equivalent to [tex]\frac{1}{6}[/tex].
Step-by-step explanation:
The given expression is
[tex]36^{-\frac{1}{2}}[/tex]
[tex]36^{-\frac{1}{2}}=\frac{1}{36^{\frac{1}{2}}}[/tex] [tex][\because a^{-x}=\frac{1}{a^x}][/tex]
[tex]36^{-\frac{1}{2}}=\frac{1}{\sqrt{36}}[/tex] [tex][\because a^{\frac{1}{2}}=\sqrt{a}][/tex]
[tex]36^{-\frac{1}{2}}=\frac{1}{6}[/tex]
Therefore correct option is D. The value of given expression is equivalent to [tex]\frac{1}{6}[/tex].
Answer:
Option D is correct.
[tex]\frac{1}{6}[/tex] is equivalent to [tex](36)^{\frac{-1}{2}}[/tex]
Step-by-step explanation:
Given : [tex](36)^{\frac{-1}{2}}[/tex]
Find the equivalent expression:
Using rule:
- [tex](a^n)^m= a^{nm}[/tex]
- [tex]a^{-n} =\frac{1}{a^n}[/tex]
[tex](36)^{\frac{-1}{2}}[/tex]
⇒[tex](6^2)^{\frac{-1}{2})[/tex]
⇒[tex](6)^{2 \times \frac{-1}{2}}[/tex]
⇒[tex]6^{-1}[/tex] = [tex]\frac{1}{6}[/tex]
therefore, the following equivalent to [tex](36)^{\frac{-1}{2}}[/tex] is, [tex]\frac{1}{6}[/tex]
Otras preguntas
