Respuesta :

[tex]\bf \begin{cases} f(x)=2x+5\\ g(x)=x^2\\ h(x)=-2x\\ ---------------\\ g(~~f(x)~~)=[f(x)]^2\\ \qquad \qquad \qquad [2x+5]^2\\ h(~~g(~~f(x)~~)~~)=-2~([2x+5]^2) \end{cases} \\\\\\ h(~~g(~~f(x)~~)~~)=-2(2x+5)(2x+5) \\\\\\ h(~~g(~~f(x)~~)~~)=-2(\stackrel{FOIL}{4x^2+20x+25}) \\\\\\ h(~~g(~~f(x)~~)~~)=-8x^2-40x-50[/tex]

A composite function is the combination of one or more functions.

The value of h(g(f(x))) is -4x -6

The given parameters are:

[tex]f(x) = 2x + 5[/tex]

[tex]g(x) = x - 2[/tex]

[tex]h(x) = -2x[/tex]

We have:

[tex]g(x) = x - 2[/tex]

Substitute f(x) for x

[tex]g(f(x)) = f(x) -2[/tex]

Substitute [tex]f(x) = 2x + 5[/tex]

[tex]g(f(x)) = 2x + 5 -2[/tex]

[tex]g(f(x)) = 2x + 3[/tex]

Substitute g(f(x)) for x in [tex]h(x) = -2x[/tex]

[tex]h(g(f(x))) = -2g(f(x))[/tex]

Substitute [tex]g(f(x)) = 2x + 3[/tex]

[tex]h(g(f(x))) = -2(2x + 3)[/tex]

Open bracket

[tex]h(g(f(x))) = -4x -6[/tex]

Hence, the value of h(g(f(x))) is -4x -6

Read more about composite functions at:

https://brainly.com/question/24635714

ACCESS MORE
EDU ACCESS