Respuesta :
[tex]\bf \begin{cases}
f(x)=2x+5\\
g(x)=x^2\\
h(x)=-2x\\
---------------\\
g(~~f(x)~~)=[f(x)]^2\\
\qquad \qquad \qquad [2x+5]^2\\
h(~~g(~~f(x)~~)~~)=-2~([2x+5]^2)
\end{cases}
\\\\\\
h(~~g(~~f(x)~~)~~)=-2(2x+5)(2x+5)
\\\\\\
h(~~g(~~f(x)~~)~~)=-2(\stackrel{FOIL}{4x^2+20x+25})
\\\\\\
h(~~g(~~f(x)~~)~~)=-8x^2-40x-50[/tex]
A composite function is the combination of one or more functions.
The value of h(g(f(x))) is -4x -6
The given parameters are:
[tex]f(x) = 2x + 5[/tex]
[tex]g(x) = x - 2[/tex]
[tex]h(x) = -2x[/tex]
We have:
[tex]g(x) = x - 2[/tex]
Substitute f(x) for x
[tex]g(f(x)) = f(x) -2[/tex]
Substitute [tex]f(x) = 2x + 5[/tex]
[tex]g(f(x)) = 2x + 5 -2[/tex]
[tex]g(f(x)) = 2x + 3[/tex]
Substitute g(f(x)) for x in [tex]h(x) = -2x[/tex]
[tex]h(g(f(x))) = -2g(f(x))[/tex]
Substitute [tex]g(f(x)) = 2x + 3[/tex]
[tex]h(g(f(x))) = -2(2x + 3)[/tex]
Open bracket
[tex]h(g(f(x))) = -4x -6[/tex]
Hence, the value of h(g(f(x))) is -4x -6
Read more about composite functions at:
https://brainly.com/question/24635714