Respuesta :

 For this case we have the following equation:
 [tex]y = 3cosx-1 [/tex]
 We must find the maximum and minimum values of the equation to find the range. 
 We have then:
 For x = 0
 [tex]y = 3cos (0) -1 y = 3 (1) -1 y = 3-1 y = 2[/tex]
 For x = pi
 [tex]y = 3cos ( \pi ) -1 y = 3 (-1) -1 y = -3-1 y = -4[/tex]
 The range of the function is given by:
 [-4, 2]
 Equivalently,
 -4 ≤ x ≤ 2
 Answer:
 b) -4 ≤ x ≤ 2

Answer:  The correct option is (b) [tex]-4\leq y\leq 2.[/tex]

Step-by-step explanation:  We are given to select the correct range of the following function

[tex]y=3\cos x-1.[/tex]

We know that the range of the cosine function is from - 1 to 1.

That is,

[tex]-1\leq \cos x\leq 1\\\\\Rightarrow -(1)\times 3\leq 3\times \cos x\leq 3\times 1\\\\\Rightarrow -3\leq 3\cos x\leq 3\\\\\Rightarrow -3-1\leq 3\cos x-1\leq 3-1\\\\\Rightarrow -4\leq 3\cos x-1\leq 2\\\\\Rightarrow -4\leq y\leq 2.[/tex]

Thus, the range of the given function is [tex]-4\leq y\leq 2.[/tex]

Option (b) is CORRECT.

RELAXING NOICE
Relax