Respuesta :
Interquartile range of the old set = 76 - 72 = 4
Interquartile range of the new set = 76 - 73 = 3
IQR of new est < old set.
Interquartile range of the new set = 76 - 73 = 3
IQR of new est < old set.
Answer:
The interquartile range of the new set is less than the interquartile range of the original set.
Step-by-step explanation:
Given : 69, 70, 72, 72, 74, 74, 74, 75, 76, 76, 76, 77, 77, 82
To Find : If the highest and lowest numbers were dropped to form a new set of data how would the inter quartile range of the new set compare to the inter quartile range of the original set?
Solution:
Data : 69, 70, 72, 72, 74, 74, 74, 75, 76, 76, 76, 77, 77, 82
No. of terms = 14
Median = [tex]\frac{\frac{n}{2}\text{th term}+(\frac{n}{2}+1)\text{th term}}{2}[/tex]
Median = [tex]\frac{\frac{14}{2}\text{th term}+(\frac{14}{2}+1)\text{th term}}{2}[/tex]
Median = [tex]\frac{7\text{th term}+(8)\text{th term}}{2}[/tex]
Median = [tex]\frac{74+75}{2}[/tex]
Median = [tex]74.5[/tex]
[tex]Q_1[/tex] is the median of the lower half of data ( data below the median)
Data : 69, 70, 72, 72, 74, 74, 74
No. of terms = 7
Median = 4th term =72
[tex]Q_1=72[/tex]
[tex]Q_3[/tex] is the median of the upper half of data ( data above the median)
Data : 75, 76, 76, 76, 77, 77, 82
No. of terms = 7
Median = 4th term =76
[tex]Q_3=76[/tex]
IQR = [tex]Q_3-Q_1=76-72=4[/tex]
Now the highest and lowest numbers were dropped to form a new set of data
So, new data : 70, 72, 72, 74, 74, 74, 75, 76, 76, 76, 77, 77
No. of terms = 12
Median = [tex]\frac{\frac{n}{2}\text{th term}+(\frac{n}{2}+1)\text{th term}}{2}[/tex]
Median = [tex]\frac{\frac{12}{2}\text{th term}+(\frac{12}{2}+1)\text{th term}}{2}[/tex]
Median = [tex]\frac{6\text{th term}+(7)\text{th term}}{2}[/tex]
Median = [tex]\frac{74+75}{2}[/tex]
Median = [tex]74.5[/tex]
[tex]Q_1[/tex] is the median of the lower half of data ( data below the median)
Data: 70, 72, 72, 74, 74, 74,
No. of terms = 6
Median = [tex]\frac{3\text{rd term }+4 \text{th term}}{2}[/tex]
Median = [tex]\frac{72+74}{2}=73[/tex]
[tex]Q_1=73[/tex]
[tex]Q_3[/tex] is the median of the upper half of data ( data above the median)
Data : 75, 76, 76, 76, 77, 77
No. of terms = 6
Median = [tex]\frac{3\text{rd term }+4 \text{th term}}{2}[/tex]
Median = [tex]\frac{76+76}{2}=76[/tex]
[tex]Q_3=76[/tex]
IQR = [tex]Q_3-Q_1=76-73=3[/tex]
Thus IQR of old data set is greater than IQR of new data set i.e. 4>3
Hence The interquartile range of the new set is less than the interquartile range of the original set.