Answer: [tex]2411.52\ in^3[/tex]
Step-by-step explanation:
In the given figure, we have a hemisphere and cone with same radius = 8 in.
The volume of hemisphere is given by :-
[tex]\text{Volume}=\frac{2}{3}\pi r^3\\\\\Rightarrow\text{Volume}=\frac{2}{3}(3.14)(8)^3\\\\\Rightarrow\text{Volume}=1071.78666667\ in^3[/tex]
For cone, the height of cone = 20 in.
The volume of cone is given by :-
[tex]\text{Volume}=\frac{1}{3}\pi r^2h\\\\\Rightarrow\text{Volume}=\frac{1}{3}(3.14)(8)^2(20)\\\\\Rightarrow\text{Volume}=1339.73333333\ in^3[/tex]
Now, the exact volume of the figure
=Volume of cone+Volume of hemisphere
[tex]=1071.78666667+1339.73333333=2411.52\ in^3[/tex]