Presumably, [tex]P(n,k)[/tex] refers to the number of ways we can pick [tex]k[/tex] objects from a pool of [tex]n[/tex] objects in a certain order. We have
[tex]P(n,k)=\dfrac{n!}{(n-k)!}[/tex]
so
[tex]P(12,5)=\dfrac{12!}{(12-5)!}=\dfrac{12!}{7!}=95,040[/tex]
[tex]P(8,8)=\dfrac{8!}{(8-8)!}=\dfrac{8!}{0!}=40,320[/tex]