For [tex]f_X(x)[/tex] to be a proper density function, we need
[tex]\displaystyle\int_{-\infty}^\infty f_X(x)\,\mathrm dx=1[/tex]
We have
[tex]\displaystyle\int_{-\infty}^\infty f_X(x)\,\mathrm dx=k\int_0^1x(1-x)\,\mathrm dx=\frac k6=1\implies k=6[/tex]
The mean is given by
[tex]\mathbb E[X]=\displaystyle\int_{-\infty}^\infty x\,f_X(x)\,\mathrm dx=6\int_0^1x^2(1-x)\,\mathrm dx=\frac12[/tex]
The variance is
[tex]\mathbb V[X]=\mathbb E[X^2]-\mathbb E[X]^2[/tex]
where
[tex]\mathbb E[X^2]=\displaystyle\int_{-\infty}^\infty x^2\,f_X(x)\,\mathrm dx=6\int_0^1x^3(1-x)\,\mathrm dx=\frac3{10}[/tex]
so that
[tex]\mathbb V[X]=\dfrac3{10}-\dfrac1{2^2}=\dfrac1{20}[/tex]