We rewrite the equation:
y = y0 * e ^ (- 0.0002 * t)
In this equation:
I = represents the initial amount of the isotope
We have then:
89% of the isotope left:
0.89 * y0 = y0 * e ^ (- 0.0002 * t)
We clear the time:
e ^ (- 0.0002 * t) = 0.89
Ln (e ^ (- 0.0002 * t)) = Ln (0.89)
-0.0002 * t = Ln (0.89)
t = Ln (0.89) / (- 0.0002)
t = 582.6690813
round to the nearest year:
t = 583 years
Answer:
There will be 89% of the isotope left in about:
t = 583 years