Write the vector v in terms of i and j whose magnitude and direction angle θ are given.

= 8, θ = 30°
a. v = 4i + 4sqrt3j

b. v = -4sqrt3i + 4j

c. v = 4sqrt3i + 4j

d. v = 4sqrt2i + 4sqrt2j

Respuesta :

[tex]\bf \begin{cases} r=8\\ \theta =30^o \end{cases}\qquad \qquad \qquad \qquad \begin{cases} tan(\theta )=\frac{b}{a}\\ r^2=a^2+b^2 \end{cases}\\\\ -------------------------------\\\\ tan(30^o)=\cfrac{b}{a}\implies \cfrac{\quad\frac{1}{2} \quad }{\frac{\sqrt{3}}{2}}=\cfrac{b}{a}\implies \cfrac{1}{\sqrt{3}}=\cfrac{b}{a}\implies \boxed{\cfrac{a}{\sqrt{3}}=b}\\\\ -------------------------------[/tex]

[tex]\bf 8^2=a^2+b^2\implies 64=a^2+b^2\implies 64=a^2+\left( \boxed{\cfrac{a}{\sqrt{3}}} \right)^2 \\\\\\ 64=a^2+\cfrac{a^2}{3}\implies 64=\cfrac{4a^2}{3}\implies 16=\cfrac{a^2}{3}\implies 48=a^2 \\\\\\ \sqrt{48}=a\implies \boxed{4\sqrt{3}=a}\\\\ -------------------------------\\\\ \cfrac{a}{\sqrt{3}}=b\implies \cfrac{4\sqrt{3}}{\sqrt{3}}=b\implies \boxed{4=b}\\\\ -------------------------------\\\\ v~=~4\sqrt{3}i~+~4j[/tex]

If the magnitude is 8 and the angle (θ) is 30°, then the vector v is given as v = (4√3)i + 4j. Then the correct option is C.

What is a vector?

The quantity which has magnitude, direction, and follows the law of vector addition is called a vector.

Write the vector v in terms of i and j whose magnitude and direction angle θ are given.

Magnitude (A) = 8, θ = 30°

The vector equation is given as

v = (A cos θ)i + (A sin θ)j

v = (8 × cos 30°)i + (8 × sin 30°)j

v = (4√3)i + 4j

More about the vector link is given below.

https://brainly.com/question/13188123