Respuesta :
[tex]\bf \textit{height of an equilateral triangle}\\\\
h=\cfrac{s\sqrt{3}}{2}\qquad \begin{cases}
s=\textit{length of a side}\\
---------\\
s=8
\end{cases}\implies h=\cfrac{8\sqrt{3}}{2}[/tex]
Answer: The answer is 4√3 units.
Step-by-step explanation: As shown in the attached figure, ABC is an equilateral triangle with AB = BC = CA = 8 units and AD is the altitude.
We know that every altitude of an equilateral triangle divides the opposite side in two equal parts.
So, in ΔABC, we have
BD = DC = half of BC.
So,
[tex]BD=DC=\dfrac{8}{2}=4~\textup{units}.[/tex]
Since AD is perpendicular to BC, so ΔABD will be aright-angled triangle.
Using Pythagoras Theorem, we can write
[tex]AB^2=AD^2+BD^2\\\\\Rightarrow 8^2=AD^2+4^2\\\\\Rightarrow 64=AD^2+16\\\\\Rightarrow AD^2=64-16\\\\\Rightarrow AD^2=48\\\\\Rightarrow AD=4\sqrt 3.[/tex]
Thus, the length of the altitude is 4√3 units.
![Ver imagen ColinJacobus](https://us-static.z-dn.net/files/d97/70896048ce8f87755fd45233334ee99f.png)