Respuesta :
The vertex form [tex]f(x)[/tex] is "[tex]2(x+1.5)^2-12.5[/tex]".
Vertex form:
[tex]\to \bold{f(x) = 2x^2 + 6x - 8}[/tex]
solving the given function:
[tex]\to 2x^2+6x-8\\\\\to (2x^2+6x)-8\\\\\to 2(x^2+3x)-8\\\\[/tex]
taking the half of [tex]3[/tex] and then square it:
[tex]\to (\frac{3}{2})^2=\frac{9}{4}[/tex]
adding [tex]\frac{9}{4}\ \ to\ \ x^2+3x[/tex] but remember to double the value then:
[tex]\to 2(x^2+3x+[\frac{9}{4}])[/tex] so far to offset adding [tex]2\times (\frac{9}{4})[/tex], and subtracting the [tex]2\times (\frac{9}{4})[/tex] from [tex]-8[/tex]:
[tex]\to 2(x+[\frac{3}{2}])^2-8-[\frac{18}{4}]\\\\\to 2(x+1.5)^2-8-4.5\\\\\to 2(x+1.5)^2-12.5[/tex]
Therefore, the vertex of f(x) is "Option D".
Find out more information about the function vertex here:
brainly.com/question/24625978