PLEASE HELP
Look at the proof showing sin^4x=3-4cos2x+cos4x/8. Which expression will complete the fourth step of the proof?
sin^4x=(sin^2x)^2
sin^4x=(1-cos2x/2)^2
sin^4x=1-2cos2x+cos^22x/4
sin^4x=?
A.) 1-2cos2x+(1+cos4x/2)/4
B.)1-2cos2x+1+cos4x/4
C.)1-2cos2x+(1+cos2x/2)/4
D.)1-2cos2x+1-cos2x/4

Respuesta :


A
p/s : follow me and I will help you more about maths :))))
Ver imagen gazatavnp5viw6

Answer:

Option 1 is correct.

Step-by-step explanation:

Given the expression

[tex]sin^4x=\frac{1}{8}{(3-4cos2x+cos4x)}[/tex]

we have to complete the fourth step to prove the above result.

[tex]sin^4x=(sin^2x)^2\\\\sin^4x=(\frac{1-cos2x}{2})^2 \\\\sin^4x=\frac{1-2cos2x+cos^22x}{4}[/tex]

As, [tex]cos^2x=\frac{1+cos2x}{2}[/tex]

⇒  [tex]cos^{2}2x=\frac{1+cos4x}{2}[/tex]

Hence, the next step becomes

[tex]sin^4x=\frac{1-2cos2x+\frac{1+cos4x}{2}}{4}[/tex]

Hence, option 1 is correct.

ACCESS MORE