Respuesta :
The function that would tell us how ball's radius is changing over time is:
[tex]r(t)=100-3t[/tex]
We know that volume of a sphere is:
[tex]V=\frac{4}{3}\pi r^3\\ V(t)=\frac{4}{3}\pi (100-3t)^3[/tex]
Now to find the rate of change we have to find the derivative with respect to time:
[tex]\frac{dV(t)}{dt}=\frac{4}{3}\pi ((100-3t)^3)'\\
\frac{dV(t)}{dt}=\frac{4}{3}\pi\cdot 3(100-3t)^2\cdot(100-3t)'\\
\frac{dV(t)}{dt}=\frac{4}{3}\pi\cdot 3(100-3t)^2\cdot(-3)\\
\frac{dV(t)}{dt}=-12\pi\cdot (100-3t)^2\\[/tex]
Now we simply plug in t=25 to get our answer:
[tex]\frac{dV(t)}{dt}=-12\pi\cdot (100-3\cdot 25)^2\\ \frac{dV(t)}{dt}=-23561.94\ \frac{cm^3}{min}[/tex]
[tex]r(t)=100-3t[/tex]
We know that volume of a sphere is:
[tex]V=\frac{4}{3}\pi r^3\\ V(t)=\frac{4}{3}\pi (100-3t)^3[/tex]
Now to find the rate of change we have to find the derivative with respect to time:
[tex]\frac{dV(t)}{dt}=\frac{4}{3}\pi ((100-3t)^3)'\\
\frac{dV(t)}{dt}=\frac{4}{3}\pi\cdot 3(100-3t)^2\cdot(100-3t)'\\
\frac{dV(t)}{dt}=\frac{4}{3}\pi\cdot 3(100-3t)^2\cdot(-3)\\
\frac{dV(t)}{dt}=-12\pi\cdot (100-3t)^2\\[/tex]
Now we simply plug in t=25 to get our answer:
[tex]\frac{dV(t)}{dt}=-12\pi\cdot (100-3\cdot 25)^2\\ \frac{dV(t)}{dt}=-23561.94\ \frac{cm^3}{min}[/tex]
The rate of decrement in volume after 25 minutes is [tex]-23561.94 \;\rm cm^{3}/min[/tex].
Given data:
The rate of decrement in radius is, [tex]\dfrac{dr}{dt} = 3 \;\rm cm/min[/tex].
The initial value of radius is, r = 100 cm.
The time interval is, t = 25 minutes.
The volume of snowball is,
[tex]V = \dfrac{4}{3} \pi (100-3r)^{3}[/tex]
Differentiate the volume as,
[tex]\dfrac{dV}{dt} = \dfrac{4}{3} \pi (3)(-3)(100-3t)^{2}\\\dfrac{dV}{dt} = \dfrac{4}{3} \pi (3)(-3)(100-3(25))^{2}\\\\\dfrac{dV}{dt} = -23561.94 \;\rm cm^{3}/min[/tex]
Thus, the rate of decrement in volume after 25 minutes is [tex]-23561.94 \;\rm cm^{3}/min[/tex].
Learn more about the volume of spherical entity here:
https://brainly.com/question/14294555?referrer=searchResults