Ariel completes the square for the equation x2 - 16x + 17 = 0. Which of the following equations reveals the vertex of the parabola?
A.y = (x - 4)^2 - 47
B.y = (x - 9)^2 - 47
C.y = (x - 6)^2 - 45
D.y = (x - 8)^2 - 47

Respuesta :

x² - 16x + 17 = 0
x² - 16x + 8² - 8² + 17 = 0
(x - 8)² - 64 + 17 = 0
(x - 8)² - 47 = 0 

-----------------------------------------------------------------------------------------
Answer: y = (x - 8)² - 47 (Answer D)
-----------------------------------------------------------------------------------------

Answer:

Option D is correct

[tex]y = (x-8)^-47[/tex]

Step-by-step explanation:

A quadratic equation is in the form of [tex]y=ax^2+bx+c [/tex],

then the vertex form of the quadratic equation using the completing square method is given as:

[tex]y =(x-h)^2+k[/tex] where, vertex = (h, k)

As per the statement:

Ariel completes the square for the equation: [tex]x^2-16x+17 = 0[/tex]

Using completing square method:

1.

subtract 17 from both sides we have;

[tex]x^2-16x = -17[/tex]

2.

Complete the square on the left side of the equation and balance this by adding [tex]8^2 = 64[/tex] to the right side of the equation.

then;

[tex]x^2-16x+8^2= -17+64[/tex]

Using identity rules on left side:

[tex](a-b)^2 = a^2-2ab+b^2[/tex]

then;

[tex](x-8)^2 = 47[/tex]

we can write this as:

[tex]y = (x-8)^-47[/tex]

Therefore, the equations reveals the vertex of the parabola is, [tex]y = (x-8)^-47[/tex]

ACCESS MORE