solve by completing the square: A rectangular patio has a length of x+6m, a width of x+8m, and the total area of 400 m^2. find the dimensions to the nearest tenth

Respuesta :

[tex](x + 8)( x + 6) = 400 \\ x { }^{2} + 14x - 352 = 0 \\ (x + 7) {}^{2} - 401 = 0 \\ x = - 7 + \sqrt{401} \\ [/tex]

Length of the rectangular patio = (x + 6) m

width of the rectangular patio = (x +8)m

Area of rectangle=Length*Width.

400=(x+6)(x+8)

400=[tex] x^{2} [/tex]+14x+48

For completing square, first add - 48 on both side

400 - 48 = [tex] x^{2} [/tex]+14x

352 = [tex] x^{2} [/tex]+14x

To make a complete square add the third term =[tex] \left ( \frac{-b}{2a} \right )^{}2 [/tex]

a= 1 and b= 14

Third term = [tex] \left ( \frac{-14}{2} \right )^{}2 [/tex]

Third term = 49

Now add 49 in both side of the equation

352 + 49 = [tex] x^{2} [/tex]+14x + 49

401 = [tex] \left ( x+7 \right )^{2} [/tex]

Taking square root on both sides

[tex] x + 7 = \pm \sqrt{401} [/tex]

We can not consider the negative value

so x + 7 = 20.02

x = 20.02 -7

x= 13.02

Length of the rectangular patio = (x + 6) = 13.02 + 6 = 19.02 m

width of the rectangular patio = (x +8) = 13.02 + 8 = 21.02 m

ACCESS MORE