Respuesta :
[tex]\bf \begin{cases}
P=(5,9)\\
Q=(13,12)
\end{cases}\qquad\stackrel{\vec{PQ}}{\ \textless \ 13-5~~,~~12-9\ \textgreater \ }\implies \ \textless \ 8~,~3\ \textgreater \ [/tex]
ANSWER
The vector in the component form is
[tex]\binom{8}{3} [/tex]
and the magnitude is
[tex] \sqrt{73} [/tex]
EXPLANATION
The given points are P=(5,9) and Q=(13,12).
We want to find the component form of vector PQ.
Let the components of vector PQ be
[tex] \binom{x}{y} [/tex]
Vector PQ can express in terms of position vectors as follows:
This implies that;
[tex] \binom{x}{y} =\binom{13}{12} - \binom{5}{9}[/tex]
We subtract the corresponding components to get;
[tex] \binom{x}{y} = \binom{13 - 5}{12 - 9} [/tex]
The vector in component form is
[tex] \binom{x}{y} = \binom{8}{3} [/tex]
The magnitude of vector PQ is
[tex] = \sqrt{ {x}^{2} + {y}^{2} } [/tex]
[tex] = \sqrt{ {8}^{2} + {3}^{2} } [/tex]
[tex] = \sqrt{64+ 9} [/tex]
[tex] = \sqrt{73} [/tex]
The vector in the component form is
[tex]\binom{8}{3} [/tex]
and the magnitude is
[tex] \sqrt{73} [/tex]
EXPLANATION
The given points are P=(5,9) and Q=(13,12).
We want to find the component form of vector PQ.
Let the components of vector PQ be
[tex] \binom{x}{y} [/tex]
Vector PQ can express in terms of position vectors as follows:
This implies that;
[tex] \binom{x}{y} =\binom{13}{12} - \binom{5}{9}[/tex]
We subtract the corresponding components to get;
[tex] \binom{x}{y} = \binom{13 - 5}{12 - 9} [/tex]
The vector in component form is
[tex] \binom{x}{y} = \binom{8}{3} [/tex]
The magnitude of vector PQ is
[tex] = \sqrt{ {x}^{2} + {y}^{2} } [/tex]
[tex] = \sqrt{ {8}^{2} + {3}^{2} } [/tex]
[tex] = \sqrt{64+ 9} [/tex]
[tex] = \sqrt{73} [/tex]