Respuesta :

[tex]\bf \begin{cases} P=(5,9)\\ Q=(13,12) \end{cases}\qquad\stackrel{\vec{PQ}}{\ \textless \ 13-5~~,~~12-9\ \textgreater \ }\implies \ \textless \ 8~,~3\ \textgreater \ [/tex]
ANSWER

The vector in the component form is

[tex]\binom{8}{3} [/tex]
and the magnitude is

[tex] \sqrt{73} [/tex]


EXPLANATION

The given points are P=(5,9) and Q=(13,12).


We want to find the component form of vector PQ.

Let the components of vector PQ be

[tex] \binom{x}{y} [/tex]

Vector PQ can express in terms of position vectors as follows:




This implies that;


[tex] \binom{x}{y} =\binom{13}{12} - \binom{5}{9}[/tex]

We subtract the corresponding components to get;

[tex] \binom{x}{y} = \binom{13 - 5}{12 - 9} [/tex]
The vector in component form is

[tex] \binom{x}{y} = \binom{8}{3} [/tex]



The magnitude of vector PQ is

[tex] = \sqrt{ {x}^{2} + {y}^{2} } [/tex]



[tex] = \sqrt{ {8}^{2} + {3}^{2} } [/tex]


[tex] = \sqrt{64+ 9} [/tex]




[tex] = \sqrt{73} [/tex]



ACCESS MORE