Respuesta :

The inequality is
[tex]y\ \textgreater \ -x^2+5[/tex]

Let's try all the three points to see if they satisfy the equation:
1) (x=0,y=5) --> [tex]5\ \textgreater \ -(0)^2+5=5[/tex] --> not satisfied
2) (x=1,y=3) --> [tex]3\ \textgreater \ -(1)^2+5=1+5=6[/tex] --> not satisfied
3) (x=2,y=4) --> [tex]4\ \textgreater \ -(2)^2+5=-4+5=1[/tex] --> satisfied
so, the only option that satisfies the inequality is (2,4).

Answer:

(2, 4) is solution .

Step-by-step explanation:

Given : y > -x² + 5

To find : Which of the following points is in the solution set.

Solution : We have given that y > -x² + 5

Let us check for all set

For (0,5 ) ,  x = 0

y > -(0)² + 5

y > 5

False

For (1,3) ,  x = 1

Olug in given equation y > -x² + 5.

y > - (1)²+5

y > -1 +4

y > 3

False

For (2,4), x = 2

y > -(2)² + 5.

y > -4 +5

y > 1

True .

Therefore, (2, 4) is solution .

ACCESS MORE