Respuesta :
The inequality is
[tex]y\ \textgreater \ -x^2+5[/tex]
Let's try all the three points to see if they satisfy the equation:
1) (x=0,y=5) --> [tex]5\ \textgreater \ -(0)^2+5=5[/tex] --> not satisfied
2) (x=1,y=3) --> [tex]3\ \textgreater \ -(1)^2+5=1+5=6[/tex] --> not satisfied
3) (x=2,y=4) --> [tex]4\ \textgreater \ -(2)^2+5=-4+5=1[/tex] --> satisfied
so, the only option that satisfies the inequality is (2,4).
[tex]y\ \textgreater \ -x^2+5[/tex]
Let's try all the three points to see if they satisfy the equation:
1) (x=0,y=5) --> [tex]5\ \textgreater \ -(0)^2+5=5[/tex] --> not satisfied
2) (x=1,y=3) --> [tex]3\ \textgreater \ -(1)^2+5=1+5=6[/tex] --> not satisfied
3) (x=2,y=4) --> [tex]4\ \textgreater \ -(2)^2+5=-4+5=1[/tex] --> satisfied
so, the only option that satisfies the inequality is (2,4).
Answer:
(2, 4) is solution .
Step-by-step explanation:
Given : y > -x² + 5
To find : Which of the following points is in the solution set.
Solution : We have given that y > -x² + 5
Let us check for all set
For (0,5 ) , x = 0
y > -(0)² + 5
y > 5
False
For (1,3) , x = 1
Olug in given equation y > -x² + 5.
y > - (1)²+5
y > -1 +4
y > 3
False
For (2,4), x = 2
y > -(2)² + 5.
y > -4 +5
y > 1
True .
Therefore, (2, 4) is solution .