Since [tex]\mathcal S[/tex] is closed, use the divergence theorem:
[tex]\displaystyle\iint_{\mathcal S}\mathbf f(x,y,z)\cdot\,\mathrm d\mathbf S=\iiint_{\mathcal V}\nabla\times\mathbf f(x,y,z)\,\mathrm dV[/tex]
where [tex]\mathcal V[/tex] is the solid with boundary [tex]\mathcal S[/tex]. Now,
[tex]\nabla\times\mathbf f=\dfrac{\partial x}{\partial x}+\dfrac{\partial y}{\partial y}+\dfrac{\partial6}{\partial z}=1+1+0=2[/tex]
so the volume integral, converting to cylindrical coordinates via
[tex]\begin{cases}x(r,u,v)=r\cos u\\y(r,u,v)=v\\z(r,u,v)=r\sin u\end{cases}[/tex]
is
[tex]\displaystyle2\iiint_{\mathcal V}\,\mathrm dV=2\int_{u=0}^{u=2\pi}\int_{r=0}^{r=1}\int_{v=0}^{v=2-r\cos u}r\,\mathrm dv\,\mathrm dr\,\mathrm du=4\pi[/tex]