4 The ratio of corresponding dimensions of two similar solids is 3/4. The surface
area of the first solid is 96 m². Its volume is 720 m³. Find the surface area and
volume of the second solid. Round each answer to the nearest tenth, if
necessary. Show your work

5 A globe in a brass stand has a diameter of 40 in. What is the volume of the
globe to the nearest cubic inch? Show your work.

Respuesta :

iGreen
4.

The ratio is 3/4 for corresponding dimensions, the ratio of their surface areas is equal to the square of this ratio:

[tex]\sf (\dfrac{3}{4})^2=\dfrac{S}{96}[/tex]

Simplify the exponent:

[tex]\sf \dfrac{9}{16}=\dfrac{96}{S}[/tex]

Cross multiply:

[tex]\sf 9S=1536[/tex]

Divide 9 to both sides:

[tex]\sf S\approx 170.7~m^2[/tex]

So the surface area of the second solid is 54 square meters.

The ratio is 3/4 for corresponding dimensions, the ratio of their volumes is equal to the cube of this ratio:

[tex]\sf (\dfrac{3}{4})^3=\dfrac{720}{V}[/tex]

Simplify the exponent:

[tex]\sf \dfrac{27}{64}=\dfrac{720}{V}[/tex]

Cross multiply:

[tex]\sf 27V=46080[/tex]

Divide 64 to both sides:

[tex]\sf V\approx 1706.7~m^3[/tex]

5.

A globe is a sphere, use the formula for the volume of a sphere:

[tex]\sf V=\dfrac{4}{3}\pi r^3[/tex]

The radius is half of the diameter, so the radius here is 40/2 = 20. Plug it in the formula, use 3.14 to approximate for Pi:

[tex]\sf V=\dfrac{4}{3}(3.14)(20)^3[/tex]

Simplify the exponent:

[tex]\sf V=\dfrac{4}{3}(3.14)(8000)[/tex]

Multiply:

[tex]\sf V\approx \boxed{\sf 33,493~in^3}[/tex]
Question 4:

---------------------------------------------------
Ratio of Dimension to Area
----------------------------------------------------
Dimension : Area
[tex] \frac{3}{4} \ : \ (\frac{3}{4} )^2[/tex]
[tex]\frac{3}{4} \ : \frac{9}{16}[/tex]

---------------------------------------------------
Find Area
----------------------------------------------------
Let x be the surface area of the second solid
[tex]\frac{9}{16} = \frac{96}{x} [/tex]
[tex]9x = 96 \times 16[/tex]
[tex]9x = 1536[/tex]
[tex]x = 1536 \div 9[/tex]
[tex]x =170.7 m^2 (\ nearest \ tenth )[/tex]

---------------------------------------------------
Answer: 170.7 m²
----------------------------------------------------


---------------------------------------------------
Ratio of Dimension to Volume
----------------------------------------------------
Dimension : Volume
[tex] \frac{3}{4} \ : \ (\frac{3}{4} )^3[/tex]
[tex] \frac{3}{4} \ : \ \frac{27}{64} [/tex]

---------------------------------------------------
Find Volume
----------------------------------------------------
Let x be the surface are of the second solid
[tex]\frac{27}{64} = \frac{720}{x} [/tex]
[tex]27x = 720 \times 64[/tex]
[tex]9x = 46080[/tex]
[tex]x = 146080 \div 27[/tex]
[tex]x =1706.7 m^2 (nearest \ hundredth )[/tex]

---------------------------------------------------
Answer: 1706.7 m³
----------------------------------------------------


Question 5
---------------------------------------------------
Find Radius
---------------------------------------------------
Radius = Diameter ÷ 2
Radius = 40 ÷ 2
Radius = 20

---------------------------------------------------
Find volume of the globe, which is a sphere
---------------------------------------------------
[tex]Volume \ of \ sphere \ = \frac{4}{3} \pi x^{3} [/tex]

[tex]Volume \ of \ sphere \ = \frac{4}{3} \pi (20)^{3} [/tex]

[tex]Volume \ of \ sphere \ = 33510.3 in^3 \ ( \ nearest \ hundredth )[/tex]

---------------------------------------------------
Answer: 33510.3 in³
----------------------------------------------------