Respuesta :

iGreen
4.

The formula for the diagonal of a rectangle is:

[tex]\sf D=\sqrt{l^2+w^2}[/tex]

Plug in what we know:

[tex]\sf D=\sqrt{4^2+3^2}[/tex]

Simplify the exponents:

[tex]\sf D=\sqrt{16+9}[/tex]

Add:

[tex]\sf D=\sqrt{25}[/tex]

Take the square root:

[tex]\sf D=\boxed{\sf 5~in}[/tex]

For the second one, we know that the area of a square is:

[tex]\sf A=s^2[/tex]

Plug in what we know:

[tex]\sf 25=s^2[/tex]

Take the square root of both sides:

[tex]\sf s=5[/tex]

So we know that the length and width are both 5 meters long, let's plug this into the formula for the diagonal:

[tex]\sf D=\sqrt{5^2+5^2}[/tex]

Simplify the exponents:

[tex]\sf D=\sqrt{25+25}[/tex]

Add:

[tex]\sf D=\sqrt{50}[/tex]

Take the square root:

[tex]\sf D\approx\boxed{\sf 7.07~m}[/tex]
Question (4): 

---------------------------------------------------------------------
Formula
---------------------------------------------------------------------
a² + b² = c²

---------------------------------------------------------------------
Substitute the values and solve the unknown
---------------------------------------------------------------------
4² + 3² = c²
c² = 16 + 9
c² = 25
c = √25
c = 5

---------------------------------------------------------------------
Answer: 5 inches
---------------------------------------------------------------------


Question (5):

---------------------------------------------------------------------
Given information
---------------------------------------------------------------------
Area of a square = 25m²

---------------------------------------------------------------------
Find length
---------------------------------------------------------------------
Area of a square = Length x Length
Length² = 25
Length = √25
Length = 5m

---------------------------------------------------------------------
Find Diagonal
---------------------------------------------------------------------
a² + b² = c²
5² + 5² = c²
c² = 25 + 35
c² = 50
c = √50
c = 5√2 (Radical Form) or 7.07 (rounded to nearest hundredth)

---------------------------------------------------------------------
Answer: Diagonal = 7.07m
---------------------------------------------------------------------