[tex]\bf \textit{area of a circle}\\\\
A=\pi r^2~~
\begin{cases}
r=radius\\
-----\\
A=80\pi
\end{cases}\implies 80\pi =\pi r^2
\implies
\cfrac{80\pi }{\pi }=r^2
\\\\\\
80=r^2\implies \sqrt{80}=r\\\\
-------------------------------[/tex]
[tex]\bf \textit{area of a sector of a circle}\\\\
A=\cfrac{\theta r^2}{2}\qquad
\begin{cases}
r=radius\\
\theta =angle~in\\
\qquad radians\\
------\\
A=36\pi\\
r=\sqrt{80}
\end{cases}\implies 36\pi =\cfrac{\theta (\sqrt{80})^2}{2}
\\\\\\
72\pi =80\theta \implies \cfrac{72\pi }{80}=\theta \implies \cfrac{9\pi }{10}=\theta [/tex]
[tex]\bf \textit{arc's length}\\\\
s=r\theta ~~
\begin{cases}
r=radius\\
\theta =angle~in\\
\qquad radians\\
------\\
r=\sqrt{80}\\
\qquad \sqrt{4^2\cdot 5}\\
\qquad 4\sqrt{5}\\
\theta =\frac{9\pi }{10}
\end{cases}\implies s=4\sqrt{5}\cdot \cfrac{9\pi }{10}\implies s=\cfrac{18\pi \sqrt{5}}{5}[/tex]