Area of triangle ABD = [tex] \frac{b \times h}{2} [/tex]
Area of triangle ABD = [tex] \frac{(10+20) \times 15}{2} [/tex]
Area of triangle ABD = [tex] \frac{30 \times 15}{2} [/tex]
Area of triangle ABD = (15) (15) = 225 sq. units
Area of triangle BDC = [tex] \frac{b \times h}{2} [/tex]
Area of triangle BDC = [tex] \frac{(10+20) \times 25}{2} [/tex]
Area of triangle BDC = [tex] \frac{30 \times 25}{2} [/tex]
Area of triangle BDC = (15) (15) = 375 sq. units
Area of Quadrilateral ABCD = Area of triangle ABD + Area of triangle BDC
Area of Quadrilateral ABCD = 225 + 375 = 600 sq. units
-------------------------------------------------------------------------------------------------------------
BD = d1 and AC = d2
Area of triangle ABD = [tex] \frac{b \times h}{2} [/tex]
Area of triangle ABD = [tex] \frac{d1 \times AO}{2} [/tex]
Area of triangle BDC = [tex] \frac{b \times h}{2} [/tex]
Area of triangle BDC = [tex] \frac{d1 \times OC}{2} [/tex]
Area of Quadrilateral ABCD = Area of triangle ABD + Area of triangle BDC
Area of Quadrilateral ABCD = [tex] \frac{d1 \times AO}{2} [/tex] + [tex] \frac{d1 \times OC}{2} [/tex]
Area of Quadrilateral ABCD = [tex] \frac{1}{2}\times d1(AO + OC) [/tex]
But AO + OC = AC = d2
Area of Quadrilateral ABCD = [tex] \frac{1}{2}\times d1 \times d2 [/tex]