contestada

The function f(x) = 15(2)^x represents the growth of a frog population every year in a remote swamp. Elizabeth wants to manipulate the formula to an equivalent form that calculates every half-year, not every year. Which function is correct for Elizabeth's purposes?

f(x) = 15(2^1/2)^2x
f(x) = 15(2^2) ^x/2
f(x) = 15/2(2)^x
f(x) = 30(2)^x

Respuesta :

Answer:

[tex]\boxed{\boxed{B.\ f(x)=15(2^2)^{\frac{x}{2}}}}[/tex]

Step-by-step explanation:

The general equation for exponential growth is,

[tex]y=a(1+r)^x[/tex]

where,

a = initial amount,

r = rate of growth,

y = future amount,

x = time.

The function [tex]f(x) = 15(2)^x[/tex] represents the growth of a frog population every year in a remote swamp.

where 15 is the initial amount of frog.

As Elizabeth wants to manipulate the formula to an equivalent form that calculates every half-year, so putting [tex]x=\dfrac{x}{2}[/tex] in the general function,

[tex]y=15(1+r)^{\frac{x}{2}}[/tex]

Now we have to find the value of r.

As we will get same future amount, irrespective to the function used, so comparing the old function with the new function,

[tex]\Rightarrow 15(1+r)^{\frac{x}{2}}=15(2)^x[/tex]

Multiplying the exponents of both sides by [tex]\dfrac{1}{x}[/tex]

[tex]\Rightarrow (1+r)^{\frac{x}{2}\times \frac{1}{x}}=(2)^{x\times \frac{1}{x}}[/tex]

[tex]\Rightarrow (1+r)^{\frac{1}{2}}=(2)^1[/tex]

Squaring both sides,

[tex]\Rightarrow (1+r)=(2)^2=4[/tex]

[tex]\Rightarrow r=4-1=3[/tex]

Putting the value of r, in the general equation,

[tex]y=15(1+3)^{\frac{x}{2}}=15(4)^{\frac{x}{2}}=15(2^2)^{\frac{x}{2}}[/tex]


ACCESS MORE