Respuesta :

[tex]\bf (\stackrel{a}{-4}~,~\stackrel{b}{7})\impliedby \textit{let's find the \underline{hypotenuse}} \\\\\\ \textit{using the pythagorean theorem}\\\\ c^2=a^2+b^2\implies c=\sqrt{a^2+b^2} \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ c=\sqrt{(-4)^2+7^2}\implies c=\sqrt{65}[/tex]

keeping in mind that, even though the square root would give us two roots, the positive and negative ones, the hypotenuse is however only a radius distance, and therefore is never negative.

[tex]\bf sin(\theta)=\cfrac{opposite}{hypotenuse} \qquad\qquad cos(\theta)=\cfrac{adjacent}{hypotenuse} \\\\\\ % tangent tan(\theta)=\cfrac{opposite}{adjacent} \qquad \qquad % cotangent cot(\theta)=\cfrac{adjacent}{opposite} \\\\\\ % cosecant csc(\theta)=\cfrac{hypotenuse}{opposite} \qquad \qquad % secant sec(\theta)=\cfrac{hypotenuse}{adjacent}\\\\ -------------------------------[/tex]

[tex]\bf sin(\theta )=\cfrac{7}{\sqrt{65}}\quad \stackrel{rationalized}{\implies }\quad\cfrac{7\sqrt{65}}{65} \\\\\\ cos(\theta )=\cfrac{-4}{\sqrt{65}}\quad \stackrel{rationalized}{\implies }\quad \cfrac{-4\sqrt{65}}{65} \\\\\\ tan(\theta )=-\cfrac{7}{4}\qquad\qquad \qquad cot(\theta )=-\cfrac{4}{7} \\\\\\ csc(\theta )=\cfrac{\sqrt{65}}{7}\qquad\qquad \qquad sec(\theta )=-\cfrac{\sqrt{65}}{4}[/tex]