Respuesta :
We compute the probability using binomial law like this:
[tex]C_{15}^90.78^9(1-0.78)^6=\dfrac{15!}{9!(15-9)!}0.78^9(1-0.78)^6\\\approx0.06\text{ (use a calculator in order to evaluate the expression )}[/tex]
[tex]C_{15}^90.78^9(1-0.78)^6=\dfrac{15!}{9!(15-9)!}0.78^9(1-0.78)^6\\\approx0.06\text{ (use a calculator in order to evaluate the expression )}[/tex]
Answer: 0.061
Step-by-step explanation:
Given : The probability of U.S. households have an automatic dishwasher. : p=0.78
Sample size : n=15
Using binomial distribution, we have
[tex]P(x)=^nC_xp^x(1-p)^{n-x}[/tex] , where P(x) is the probability of getting success in x trials , p is the probability of getting success in each trial.
Now, the the probability that 9 of them have an automatic dishwasher will be :_
[tex]P(9)=^{15}C_9(0.78)^9(1-0.78)^{15-9}\\\\=\dfrac{15!}{9!(15-9)!}\times(0.78)^9(0.22)^6\\\\=0.0606445239086\approx0.061[/tex]
Hence, the probability that 9 of them have an automatic dishwasher = 0.061