PLEASE ANSWER, I WILL GIVE THE BRAINLIEST TO WHOEVER ANSWERS FIRST
Given that the domain is all real numbers, what is the limit of the range for the function ƒ(x) = 42x - 100? Choose from the following to create a limit range. (Such as x = 100)

x, f(x)
=, <, >, ≥, ≤ 0,
-100, 4, 100

Respuesta :

f(x)[tex] \geq [/tex]100 i hope you get it right

Answer:

The range is [tex]f(x)> -100[/tex]

Step-by-step explanation:

Given : The domain is all real numbers, for the function [tex]f(x) = 42^x - 100[/tex]

To find : The limit of the range for the function [tex]f(x) = 42^x - 100[/tex]

Solution :

The given function is exponential function.

The domain of the function [tex]f(x) = 42^x - 100[/tex] is all real number.

i.e, [tex]D=(-\infty,\infty)[x|x\in\mathbb{R}][/tex]

Range is the set of value that corresponds with the domain.

So, if put [tex]x\rightarrow\infty[/tex]

Function approaches to -100

So, if put [tex]x\rightarrow -\infty[/tex]

Function approaches to [tex]\infty[/tex]

which means the range of the function is

[tex]R=(-100,\infty)[y|y>-100][/tex]

Therefore, The range is [tex]f(x)> -100[/tex]

ACCESS MORE