Respuesta :
Answer:
The range is [tex]f(x)> -100[/tex]
Step-by-step explanation:
Given : The domain is all real numbers, for the function [tex]f(x) = 42^x - 100[/tex]
To find : The limit of the range for the function [tex]f(x) = 42^x - 100[/tex]
Solution :
The given function is exponential function.
The domain of the function [tex]f(x) = 42^x - 100[/tex] is all real number.
i.e, [tex]D=(-\infty,\infty)[x|x\in\mathbb{R}][/tex]
Range is the set of value that corresponds with the domain.
So, if put [tex]x\rightarrow\infty[/tex]
Function approaches to -100
So, if put [tex]x\rightarrow -\infty[/tex]
Function approaches to [tex]\infty[/tex]
which means the range of the function is
[tex]R=(-100,\infty)[y|y>-100][/tex]
Therefore, The range is [tex]f(x)> -100[/tex]