Respuesta :
Answer:
3rd, 4th and 5th options are correct choices.
Step-by-step explanation:
We have been given that the endpoints of AB are A(–8, –6) and B(4, 10). The midpoint is at C(–2, 2). The point D is the midpoint of CB.
Let us find the coordinates of D using midpoint formula.
[tex]\text{Midpoint}=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]
Upon substituting coordinates of point C and B is midpoint formula we will get,
[tex]\text{Midpoint of CB}=(\frac{-2+4}{2},\frac{2+10}{2})[/tex]
[tex]\text{Midpoint of CB}=(\frac{2}{2},\frac{12}{2})[/tex]
[tex]\text{Midpoint of CB}=(1,6)[/tex]
Since D is the midpoint of CB, therefore, the coordinates of point D are (1,6) and 3rd option is the correct choice.
Let us find the length of each segment using distance formula.
[tex]\text{Distance}=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex]\text{Length of segment AC}=\sqrt{(-2--8)^2+(2--6)^2}[/tex]
[tex]\text{Length of segment AC}=\sqrt{(-2+8)^2+(2+6)^2}[/tex]
[tex]\text{Length of segment AC}=\sqrt{(6)^2+(8)^2}[/tex]
[tex]\text{Length of segment AC}=\sqrt{36+64}[/tex]
[tex]\text{Length of segment AC}=\sqrt{100}[/tex]
[tex]\text{Length of segment AC}=10[/tex]
[tex]\text{Length of segment CD}=\sqrt{(1--2)^2+(6-2)^2}[/tex]
[tex]\text{Length of segment CD}=\sqrt{(1+2)^2+(4)^2}[/tex]
[tex]\text{Length of segment CD}=\sqrt{(3)^2+(4)^2}[/tex]
[tex]\text{Length of segment CD}=\sqrt{9+16}[/tex]
[tex]\text{Length of segment CD}=\sqrt{25}=5[/tex]
[tex]\text{Length of segment AD}=\sqrt{(1--8)^2+(6--6)^2}[/tex]
[tex]\text{Length of segment AD}=\sqrt{(1+8)^2+(6+6)^2}[/tex]
[tex]\text{Length of segment AD}=\sqrt{(9)^2+(12)^2}[/tex]
[tex]\text{Length of segment AD}=\sqrt{81+144}[/tex]
[tex]\text{Length of segment AD}=\sqrt{225}=15[/tex]
[tex]\text{Length of segment DB}=\sqrt{(1-4)^2+(6-10)^2}[/tex]
[tex]\text{Length of segment DB}=\sqrt{(3)^2+(-4)^2}[/tex]
[tex]\text{Length of segment DB}=\sqrt{9+16}[/tex]
[tex]\text{Length of segment DB}=\sqrt{25}=5[/tex]
Now let us check our 2nd, 4th and 5th options one by one.
2. D partitions AB in a 2:1 ratio.
We can represent this information using proportion as:
[tex]\frac{AD}{DB}=\frac{2}{1}[/tex]
Upon substituting length of AD and DB we will get,
[tex]\frac{15}{5}=\frac{2}{1}[/tex]
[tex]\frac{3}{1}\neq\frac{2}{1}[/tex]
Since both sides of our equation are not equal, therefore, 2nd option is not a correct choice.
4. C partitions AD in a 2:1 ratio.
We can represent this information using proportion as:
[tex]\frac{AC}{CD}=\frac{2}{1}[/tex]
Upon substituting length of AC and CD we will get,
[tex]\frac{10}{5}=\frac{2}{1}[/tex]
[tex]\frac{2}{1}=\frac{2}{1}[/tex]
Since both sides of our equation are equal, therefore, 4th option is a correct choice.
5. D partitions AB in a 3:1 ratio.
We can represent this information using proportion as:
[tex]\frac{AD}{DB}=\frac{3}{1}[/tex]
Upon substituting length of AD and DB we will get,
[tex]\frac{15}{5}=\frac{3}{1}[/tex]
[tex]\frac{3}{1}=\frac{3}{1}[/tex]
Since both sides of our equation are equal, therefore, 5th option is a correct choice.