Respuesta :
Answer:
√3
Step-by-step explanation:
The formula for the area of a trapezoid is
[tex]A=\frac{1}{2}(b_1+b_2)h[/tex]
Plugging in our information, we have
[tex]4\sqrt{6}=\frac{1}{2}(5\sqrt{2}+3\sqrt{2})h[/tex]
Combining like terms in parentheses, we have
[tex]4\sqrt{6}=\frac{1}{2}(8\sqrt{2})h[/tex]
To cancel the 1/2, we will multiply both sides by 2:
[tex]4\sqrt{6}\times 2=\frac{1}{2}(8\sqrt{2})h\times 2\\\\8\sqrt{6}=8\sqrt{2}(h)[/tex]
Divide both sides by 8:
[tex]\frac{8\sqrt{6}}{8}=\frac{8\sqrt{2}(h)}{8}\\\\\sqrt{6}=\sqrt{2}(h)[/tex]
Divide both sides by √2:
[tex]\frac{\sqrt{6}}{\sqrt{2}}=\frac{\sqrt{2}(h)}{\sqrt{2}}\\\\\frac{\sqrt{6}\sqrt{2}}{\sqrt{2}\sqrt{2}}\\\\=\frac{\sqrt{12}}{2}\\\\=\frac{\sqrt{4*3}}{2}\\\\=\frac{2\sqrt{3}}{2}\\\\=\sqrt{3}[/tex]