brainliest for best answer
![brainliest for best answer class=](https://us-static.z-dn.net/files/de7/ebce85d56f248702fb91609fa5575ed6.png)
Answer:
No Solution
Step-by-step explanation:
Let us see the various conditions to check the number of solutions for a pair of linear equations.
Let our linear equations are
ax+by=c
px+qy=r
i) for Unique Solution
[tex]\frac{a}{p}[/tex] ≠ [tex]\frac{b}{q}[/tex] = [tex]\frac{c}{r}[/tex]
[tex]\frac{a}{p}[/tex] ≠ [tex]\frac{b}{q}[/tex] ≠ [tex]\frac{c}{r}[/tex]
ii) For No Solution
[tex]\frac{a}{p}[/tex] = [tex]\frac{b}{q}[/tex] ≠ [tex]\frac{c}{r}[/tex]
iii) For many Solutions
[tex]\frac{a}{p}[/tex] ≠ [tex]\frac{b}{q}[/tex] = [tex]\frac{c}{r}[/tex]
Let us see what ratio we have for our linear equation s
here
a=1 , b=-2 , c= 4
p=-3 , q = 6 , r = 12
[tex]\frac{a}{p}[/tex] = [tex]\frac{1}{-3}[/tex] = - [tex]\frac{1}{3}[/tex]
[tex]\frac{b}{q}[/tex] = [tex]\frac{-2}{6}[/tex] = - [tex]\frac{1}{3}[/tex]
[tex]\frac{c}{r}[/tex] = [tex]\frac{4}{12}[/tex] = [tex]\frac{1}{3}[/tex]
- [tex]\frac{1}{3}[/tex] = - [tex]\frac{1}{3}[/tex] ≠ [tex]\frac{1}{3}[/tex]
Hence it satisfies the second condition of No solution