Respuesta :
=> y = (2x + 1) / (x - 4)
=> xy - 4y = 2x + 1
=> xy - 2x = 4y + 1
=> x(y - 2) = 4y + 1
=> x = (4y + 1) / (y - 2)
=> f-1(x) = (4x + 1) / (x - 2)
subtitute x = 3
=> f-1(3) = 13
=> xy - 4y = 2x + 1
=> xy - 2x = 4y + 1
=> x(y - 2) = 4y + 1
=> x = (4y + 1) / (y - 2)
=> f-1(x) = (4x + 1) / (x - 2)
subtitute x = 3
=> f-1(3) = 13
As per the inverse of a function, the value of [tex]f^{-1}(3)[/tex] is 13.
What is the inverse of a function?
"An inverse function is defined as a function, which can reverse into another function."
The given function is
[tex]f(x) = \frac{2x+1}{x-4}[/tex]
⇒ [tex]y = f(x) = \frac{2x+1}{x-4}[/tex]
⇒ [tex]xy - 4y = 2x + 1[/tex]
⇒ [tex]xy - 2x = 4y + 1[/tex]
⇒ [tex]x(y - 2)= 4y + 1[/tex]
⇒ [tex]x = \frac{4y+1}{y-2}[/tex]
⇒ [tex]f^{-1}(x) = \frac{4y+1}{y-2}[/tex]
Now, [tex]f^{-1}(3) = \frac{4(3)+1}{3-2} = (12+1) = 13[/tex]
Learn more about inverse of a function here: https://brainly.com/question/2541698
#SPJ2