Respuesta :

Astute
[tex]Pull \ out \ like \ factors : \\ \\ 42 + 20x = 2 * (10x + 21) \ \\ \\ Solve : \ 2 = \ 0 \\ \\ Subtract 21 from both sides of the equation : \\ 10x = -21 \\ \\ Divide both sides of the equation by 10: \\ \\ x = -21/10 = \boxed{-2.100 } [/tex]

Answer:

The solutions are [tex]x=-5+\sqrt{6}[/tex]  and [tex]x=-5-\sqrt{6}[/tex]


Step-by-step explanation:

we have

[tex]2x^{2} +20x=-38[/tex]

Divide by [tex]2[/tex] both sides

[tex]x^{2} +10x=-19[/tex] ------> [tex]x^{2} +10x+19=0[/tex]

we know that


The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to


[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]


in this problem we have


[tex]x^{2} +10x+19=0[/tex]

so


[tex]a=1\\b=10\\c=19[/tex]


substitute

[tex]x=\frac{-10(+/-)\sqrt{10^{2}-4(1)(19)}}{2(1)}[/tex]


[tex]x=\frac{-10(+/-)\sqrt{100-76}}{2}[/tex]


[tex]x=\frac{-10(+/-)\sqrt{24}}{2}[/tex]


[tex]x=\frac{-10(+/-)2\sqrt{6}}{2}[/tex]


[tex]x1=\frac{-10(+)2\sqrt{6}}{2}=-5+\sqrt{6}[/tex]


[tex]x2=\frac{-10(-)2\sqrt{6}}{2}=-5-\sqrt{6}[/tex]


ACCESS MORE