Respuesta :
Find the critical points within the region:
[tex]f(x,y)=2x^2+y^2-4x-2y+1[/tex]
[tex]\implies\begin{cases}f_x=4x-4=0\implies x=1\\f_y=2y-2=0\implies y=1\end{cases}[/tex]
So (1, 1) is the only critical point of the function and it happens to fall within the rectangle [tex]D[/tex]. At this point, we get a value of [tex]f(1,1)=-2[/tex].
Now check along the boundaries for potential extreme values.
If [tex]x=0[/tex], then [tex]f(0,y)=y^2-2y+1=(y-1)^2[/tex], which has a maximum when [tex]y=2[/tex] and has a minimum when [tex]y=1[/tex]. So we have a potential extrema at [tex]f(0,2)=1[/tex] and [tex]f(0,1)=0[/tex].
If [tex]x=3[/tex], then [tex]f(3,y)=y^2-2y+7=(y-1)^2+6[/tex], with a max when [tex]y=2[/tex] and min when [tex]y=1[/tex]. So we have [tex]f(3,2)=7[/tex] and [tex]f(3,1)=6[/tex].
If [tex]y=0[/tex], then [tex]f(x,0)=2x^2-4x+1=2(x-1)^2-1[/tex], with a max when [tex]x=3[/tex] and a min when [tex]x=1[/tex]. So we have [tex]f(3,0)=7[/tex] and [tex]f(1,0)=-1[/tex].
If [tex]y=2[/tex], then [tex]f(x,2)=2x^2-4x+1=2(x-1)^2-1[/tex] again, with a max when [tex]x=3[/tex] and a min when [tex]x=1[/tex]. So we have, again, [tex]f(3,2)=7[/tex] and [tex]f(1,2)=-1[/tex].
So there are absolute maxima of 7 at (3, 0) and (3,2), and an absolute minimum of -2 at (1, 1).
[tex]f(x,y)=2x^2+y^2-4x-2y+1[/tex]
[tex]\implies\begin{cases}f_x=4x-4=0\implies x=1\\f_y=2y-2=0\implies y=1\end{cases}[/tex]
So (1, 1) is the only critical point of the function and it happens to fall within the rectangle [tex]D[/tex]. At this point, we get a value of [tex]f(1,1)=-2[/tex].
Now check along the boundaries for potential extreme values.
If [tex]x=0[/tex], then [tex]f(0,y)=y^2-2y+1=(y-1)^2[/tex], which has a maximum when [tex]y=2[/tex] and has a minimum when [tex]y=1[/tex]. So we have a potential extrema at [tex]f(0,2)=1[/tex] and [tex]f(0,1)=0[/tex].
If [tex]x=3[/tex], then [tex]f(3,y)=y^2-2y+7=(y-1)^2+6[/tex], with a max when [tex]y=2[/tex] and min when [tex]y=1[/tex]. So we have [tex]f(3,2)=7[/tex] and [tex]f(3,1)=6[/tex].
If [tex]y=0[/tex], then [tex]f(x,0)=2x^2-4x+1=2(x-1)^2-1[/tex], with a max when [tex]x=3[/tex] and a min when [tex]x=1[/tex]. So we have [tex]f(3,0)=7[/tex] and [tex]f(1,0)=-1[/tex].
If [tex]y=2[/tex], then [tex]f(x,2)=2x^2-4x+1=2(x-1)^2-1[/tex] again, with a max when [tex]x=3[/tex] and a min when [tex]x=1[/tex]. So we have, again, [tex]f(3,2)=7[/tex] and [tex]f(1,2)=-1[/tex].
So there are absolute maxima of 7 at (3, 0) and (3,2), and an absolute minimum of -2 at (1, 1).