Match the expressions with the nonpermissible replacements for y

-7 _D_
[tex]\frac{3}{2}[/tex] _A_
1 _C_
[tex]\frac{-1}{4}[/tex] _B_
_A_ [tex]\frac{y^{2} -2y+1}{2y-3}[/tex]
_B_ [tex]\frac{y(y+5)}{4y+1}[/tex]
_C_ [tex]\frac{5y^{2}-6y+1 }{-5(y-1)}[/tex]
_D_ [tex]\frac{y^{2}-y-6 }{-2(y+7)}[/tex]
Answer:
-7 → [tex]\dfrac{y^2-y+6}{-2(y+7)}[/tex]
3/2 → [tex]\dfrac{y^2-2y+1}{2y-3}[/tex]
1 → [tex]\dfrac{5y^2-6y+1}{-5(y-1)}[/tex]
-1/4 → [tex]\dfrac{y(y+5)}{4y+1}[/tex]
Step-by-step explanation:
We need to find the nonpermissible replacements for y.
Equate the denominator of each expression equal to 0, to find the nonpermissible replacements for y.
First expression is
[tex]\dfrac{y^2-2y+1}{2y-3}[/tex]
Equate (2y-3) equal to 0.
[tex]2y-3=0[/tex]
Add 2 on both sides.
[tex]2y=3[/tex]
Divide both sides by 3.
[tex]y=\dfrac{3}{2}[/tex]
Therefore, 3/2 is the nonpermissible replacements for y.
Second expression is
[tex]\dfrac{y(y+5)}{4y+1}[/tex]
Equate (4y+1) equal to 0.
[tex]4y+1=0[/tex]
[tex]4y=-1[/tex]
[tex]y=-\dfrac{1}{4}[/tex]
Therefore, -1/4 is the nonpermissible replacements for y.
Third expression is
[tex]\dfrac{5y^2-6y+1}{-5(y-1)}[/tex]
Equate -5(y-1) equal to 0.
[tex]-5(y-1)=0[/tex]
[tex]y-1=0[/tex]
[tex]y=1[/tex]
Therefore, 1 is the nonpermissible replacements for y.
Fourth expression is
[tex]\dfrac{y^2-y+6}{-2(y+7)}[/tex]
Equate -2(y+7) equal to 0.
[tex]-2(y+7)=0[/tex]
[tex]y+7=0[/tex]
[tex]y=-7[/tex]
Therefore, -7 is the nonpermissible replacements for y.