Respuesta :

This is a separable first order differential equation as an initial value problem.

[tex] \dfrac{dy}{dx} =2xy^2[/tex]

Divide both sides by y².

[tex]\dfrac{1}{y^2}\dfrac{dy}{dx}=2x[/tex]

Multiply both sides by dx.

[tex]\dfrac{1}{y^2} dy=2x \times dx[/tex]

Integrate both sides.

[tex]\int \dfrac{1}{y^2} dy= \int 2x \times dx[/tex]

[tex]- \dfrac{1}{y}=x^2+C[/tex]

Multiply both sides by -1

[tex]\dfrac{1}{y}=-x^2+C_1[/tex]
(where [tex]C_1=-C[/tex])

Now, isolate y on one side of the equation.

[tex]y=\dfrac{1}{-x^2+C_1}[/tex]

That's the general solution. Now, plug in the value x=-1 and y=2.

[tex]2=\dfrac{1}{C_1-1}[/tex]

[tex]C_1=3/2[/tex]

The final solution is the following:

[tex]y=\dfrac{1}{-x^2+3/2}[/tex]

I hope this helps! If you need any clarifications, feel free to comment! :)