Respuesta :
The derivative of the function space as a function of time is equal to a function of speed as a function of time.
[tex]x(t)=2.4t \\ \frac{x(t)}{t}=t \\ v_{x}(t)=t \\ \\ y(t)=3-1.2\times t^2 \\ \frac{y(t)}{t}=1.2\times2t \\ v_{y}(t)=2.4t [/tex]
The velocity vector is given by the vector sum of the velocities of both axes.
[tex]v_{R}^2(t)=v_{x}^2(t)+v_{y}^2(t) \\ v_{R}^2(t)=(t)^2+(2.4t)^2 \\ \boxed {v_R(t)=2.6t}[/tex]
If you notice any mistake in my english, please let me know, because I am not native.
[tex]x(t)=2.4t \\ \frac{x(t)}{t}=t \\ v_{x}(t)=t \\ \\ y(t)=3-1.2\times t^2 \\ \frac{y(t)}{t}=1.2\times2t \\ v_{y}(t)=2.4t [/tex]
The velocity vector is given by the vector sum of the velocities of both axes.
[tex]v_{R}^2(t)=v_{x}^2(t)+v_{y}^2(t) \\ v_{R}^2(t)=(t)^2+(2.4t)^2 \\ \boxed {v_R(t)=2.6t}[/tex]
If you notice any mistake in my english, please let me know, because I am not native.
Answer : The velocity vector of the bird as a function of time [tex]2.4\sqrt{1+t^2}[/tex]
Solution :
[tex]x(t)=\alpha t\\\\\frac{dx}{dt}=\alpha[/tex]
The x-component is, [tex]\frac{dx}{dt}=\alpha[/tex]
[tex]y(t)=3.0m-\beta t^2\\\\\frac{dy}{dt}=-2\beta t[/tex]
The y-component is, [tex]\frac{dy}{dt}=-2\beta t[/tex]
Now we have to calculate the velocity vector of the bird as a function of time.
[tex]\overset{\rightarrow}V=\sqrt{x^2+y^2}[/tex]
Now put the values of x-component and y-component in this equation, we get
[tex]\overset{\rightarrow}V=\sqrt{x^2+y^2}=\sqrt{(\alpha)^2+(-2\beta t)^2}=\sqrt{(2.4)^2+(-2\times 1.2\times t)^2}=2.4\sqrt{1+t^2}[/tex]
Therefore, the velocity vector of the bird as a function of time [tex]2.4\sqrt{1+t^2}[/tex]