First we need to calculate the resistance of this piece of wire. For a wire with resistivity [tex]\rho[/tex], length L and cross section A, the resistance is
[tex]R= \frac{\rho L}{A} [/tex]
The diameter d of the wire is [tex]d=1.11 mm=1.11 \cdot 10^{-3} m[/tex], so the cross sectional area is
[tex]A=\pi ( \frac{d}{2} )^2=9.7 \cdot 10^{-7} m^2[/tex]
Now, using [tex]L=46.6 m[/tex] and [tex]\rho=1.68 \cdot 10^{-8} \Omega m[/tex], we can calculate the resistance:
[tex]R= \frac{\rho L}{A}= \frac{(1.68 \cdot 10^{-8} \Omega m)(46.6 m)}{9.7 \cdot 10^{-7}m^2} =0.807 \Omega [/tex]
And now we can calculate the voltage drop across the resistor, by using Ohm's law, since we know the current flowing through it: [tex]I=47.6 mA=47.6 \cdot 10^{-3} A[/tex]
[tex]V=IR=(47.6 \cdot 10^{-3} A)(0.807 \Omega)=0.038 V=38 mV[/tex]