Find the value of x. The diagram is not drawn to scale.

Answer:
C. [tex]x=99^{\circ}[/tex]
Step-by-step explanation:
We have been given a image. We are asked to find the value of x.
We can see that our given figure is a quadrilateral. We know that all interior angles of a quadrilateral add up-to 360 degrees.
[tex]x^{\circ}+y^{\circ}+125^{\circ}+72^{\circ}=360^{\circ}[/tex]
We can see that y and 116 degrees angles are linear angles, so we can set an equation as:
[tex]y^{\circ}+116^{\circ}=180^{\circ}[/tex]
[tex]y^{\circ}+116^{\circ}-116^{\circ}=180^{\circ}-116^{\circ}[/tex]
[tex]y=64^{\circ}[/tex]
Substitute [tex]y=64^{\circ}[/tex] in the equation:
[tex]x^{\circ}+y^{\circ}+125^{\circ}+72^{\circ}=360^{\circ}[/tex]
[tex]x^{\circ}+64^{\circ}+125^{\circ}+72^{\circ}=360^{\circ}[/tex]
[tex]x^{\circ}+261^{\circ}=360^{\circ}[/tex]
[tex]x^{\circ}+261^{\circ}-261^{\circ}=360^{\circ}-261^{\circ}[/tex]
[tex]x^{\circ}=99^{\circ}[/tex]
[tex]x=99[/tex]
Therefore, the value of x is 99.