What are the values of x and y?
![What are the values of x and y class=](https://us-static.z-dn.net/files/dff/454f44440a26ffee3fef4fff334ae896.png)
Answer:
D. [tex]x=\frac{64}{15}, y=\frac{136}{15}[/tex]
Step-by-step explanation:
We have been given an image of two similar triangle. We are asked to find the values of x and y for our given triangles.
We will use Pythagoras theorem to solve for x and y.
In triangle ABC:
[tex]17^2+y^2=(15+x)^2...(1)[/tex]
In triangle BCD:
[tex]x^2+8^2=y^2...(2)[/tex]
Upon substituting equation (1) in equation (1) we will get,
[tex]17^2+x^2+8^2=(15+x)^2[/tex]
[tex]289+x^2+64=225+30x+x^2[/tex]
[tex]353+x^2=225+30x+x^2[/tex]
[tex]353+x^2-x^2=225+30x+x^2-x^2[/tex]
[tex]353=225+30x[/tex]
[tex]353-225=225-225+30x[/tex]
[tex]128=30x[/tex]
[tex]\frac{128}{30}=\frac{30x}{50}[/tex]
[tex]\frac{64*2}{15*2}=x[/tex]
[tex]x=\frac{64}{15}[/tex]
Upon substituting [tex]x=\frac{64}{15}[/tex] in equation (2) we will get,
[tex](\frac{64}{15})^2+8^2=y^2[/tex]
[tex]\frac{64^2}{15^2}+64=y^2[/tex]
[tex]\frac{4096}{225}+\frac{14400}{225}=y^2[/tex]
[tex]\frac{4096+14400}{225}=y^2[/tex]
[tex]\frac{18496}{225}=y^2[/tex]
Taking square root of both sides we will get,
[tex]\sqrt{\frac{18496}{225}}=y[/tex]
[tex]\frac{136}{15}=y[/tex]
Therefore, the value of x is [tex]\frac{64}{15}[/tex], value y is [tex]\frac{136}{15}[/tex] and option D is the correct choice.