WILL GIVE BRAINLIEST!!!!!
1. Use the parabola tool to graph the quadratic function f(x)=x2+10x+16 . Graph the parabola by first plotting its vertex and then plotting a second point on the parabola.

2. Use the parabola tool to graph the quadratic function f(x)=−(x−3)(x+1) .
Graph the parabola by first plotting its vertex and then plotting a second point on the parabola.

3. Use the parabola tool to graph the quadratic function f(x)=−x2+4.
Graph the parabola by first plotting its vertex and then plotting a second point on the parabola.

4. Use the parabola tool to graph the quadratic function f(x)=2x2+16x+30 .
Graph the parabola by first plotting its vertex and then plotting a second point on the parabola.

5. Select ALL the statements that are true for the graph of y=(x+2)2+4 .

The graph has a maximum.

The graph has a minimum.

The vertex is (2, 4) .

The vertex is ​ (−2, 4) ​.

Respuesta :

1. f(x)=x²+10x+16

Use the formula to find the vertex = (-b/2a, f(-b/2a)) , here in the above equation a=1(As, a>0 the parabola is open upward), b=10. by putting the values.

-b/2a = -10/2(1) = -5

f(-b/2a)= f(-5)= (-5)²+10(-5)+16= -9

So, Vertex = (-5, -9)

Now, find y- intercept put x=0 in the above equation. f(0)= 0+0+16, we get point (0,16).

Now find x-intercept put y=0 in the above equation. 0= x²+10x+16

x²+10x+16=0 ⇒x²+8x+2x+16=0 ⇒x(x+8)+2(x+8)=0 ⇒(x+8)(x+2)=0 ⇒x=-8 , x=-2

From vertex, y-intercept and x-intercept you can easily plot the graph of given parabolic equation. The graph is attached below.

2. f(x)=−(x−3)(x+1)

By multiplying the factors, the general form is f(x)= -x²+2x+3.

Use the formula to find the vertex = (-b/2a, f(-b/2a)) , here in the above equation a=-1(As, a<0 the parabola is open downward), b=2. by putting the values.

-b/2a = -2/2(-1) = 1

f(-b/2a)= f(1)=-(1)²+2(1)+3= 4

So, Vertex = (1, 4)

Now, find y- intercept put x=0 in the above equation. f(0)= 0+0+3, we get point (0, 3).

Now find x-intercept put y=0 in the above equation. 0= -x²+2x+3.

-x²+2x+3=0 the factor form is already given in the question so, ⇒-(x-3)(x+1)=0 ⇒x=3 , x=-1

From vertex, y-intercept and x-intercept you can easily plot the graph of given parabolic equation. The graph is attached below.

3. f(x)= −x²+4

Use the formula to find the vertex = (-b/2a, f(-b/2a)) , here in the above equation a=-1(As, a<0 the parabola is open downward), b=0. by putting the values.

-b/2a = -0/2(-1) = 0

f(-b/2a)= f(0)= −(0)²+4 =4

So, Vertex = (0, 4)

Now, find y- intercept put x=0 in the above equation. f(0)= −(0)²+4, we get point (0, 4).

Now find x-intercept put y=0 in the above equation. 0= −x²+4

−x²+4=0 ⇒-(x²-4)=0 ⇒ -(x-2)(x+2)=0 ⇒x=2 , x=-2

From vertex, y-intercept and x-intercept you can easily plot the graph of given parabolic equation. The graph is attached below.

4. f(x)=2x²+16x+30

Use the formula to find the vertex = (-b/2a, f(-b/2a)) , here in the above equation a=2(As, a>0 the parabola is open upward), b=16. by putting the values.

-b/2a = -16/2(2) = -4

f(-b/2a)= f(-4)= 2(-4)²+16(-4)+30 = -2

So, Vertex = (-4, -2)

Now, find y- intercept put x=0 in the above equation. f(0)= 0+0+30, we get point (0, 30).

Now find x-intercept put y=0 in the above equation. 0=2x²+16x+30

2x²+16x+30=0 ⇒2(x²+8x+15)=0 ⇒x²+8x+15=0 ⇒x²+5x+3x+15=0 ⇒x(x+5)+3(x+5)=0 ⇒(x+5)(x+3)=0 ⇒x=-5 , x= -3

From vertex, y-intercept and x-intercept you can easily plot the graph of given parabolic equation. The graph is attached below.

5. y=(x+2)²+4

The general form of parabola is y=a(x-h)²+k , where vertex = (h,k)

if a>0 parabola is opened upward.

if a<0 parabola is opened downward.

Compare the given equation with general form of parabola.

-h=2 ⇒h=-2

k=4

so, vertex= (-2, 4)

As, a=1 which is greater than 0 so parabola is opened upward and the graph has minimum.

The graph is attached below.

Ver imagen asadullahgiki
Ver imagen asadullahgiki
Ver imagen asadullahgiki
Ver imagen asadullahgiki
Ver imagen asadullahgiki

Here are a bunch of CORRECT answers, your answer is somewhere in there. For the first CORRECT answer the second point is -5,-9. Don't make the same mistake I did on question 3, but it still shows the correct answer. I love to help.

Ver imagen gabrieldavidmilGabe
Ver imagen gabrieldavidmilGabe
Ver imagen gabrieldavidmilGabe
Ver imagen gabrieldavidmilGabe
Ver imagen gabrieldavidmilGabe
ACCESS MORE