Respuesta :
Answer is 6
------------------------------------------------------------------
Work Shown:
[tex]364 = 900(1-0.14)^t[/tex]
[tex]364 = 900(0.86)^t[/tex]
[tex]\frac{364}{900} = 0.86^t[/tex]
[tex]\frac{91}{225} = 0.86^t[/tex]
[tex]\log\left(\frac{91}{225}\right) = \log\left(0.86^t\right)[/tex]
[tex]-0.39314112579027 \approx t*\log\left(0.86\right)[/tex]
[tex]-0.39314112579027 \approx t*\left(-0.06550154875643\right)[/tex]
[tex]\frac{-0.39314112579027}{-0.06550154875643} \approx t[/tex]
[tex]6.0020126738099 \approx t[/tex]
[tex]t \approx 6.0020126738099[/tex]
which rounds to 6 when rounding to the nearest whole number
So it takes roughly 6 years for the value to go from $900 to $364
------------------------------------------------------------------
Work Shown:
[tex]364 = 900(1-0.14)^t[/tex]
[tex]364 = 900(0.86)^t[/tex]
[tex]\frac{364}{900} = 0.86^t[/tex]
[tex]\frac{91}{225} = 0.86^t[/tex]
[tex]\log\left(\frac{91}{225}\right) = \log\left(0.86^t\right)[/tex]
[tex]-0.39314112579027 \approx t*\log\left(0.86\right)[/tex]
[tex]-0.39314112579027 \approx t*\left(-0.06550154875643\right)[/tex]
[tex]\frac{-0.39314112579027}{-0.06550154875643} \approx t[/tex]
[tex]6.0020126738099 \approx t[/tex]
[tex]t \approx 6.0020126738099[/tex]
which rounds to 6 when rounding to the nearest whole number
So it takes roughly 6 years for the value to go from $900 to $364
Answer:
answer is 6
Step-by-step explanation:
Work Shown:
364 = 900(1-0.14)^t
364 = 900(0.86)^t
\frac{364}{900} = 0.86^t
\frac{91}{225} = 0.86^t
\log\left(\frac{91}{225}\right) = \log\left(0.86^t\right)
-0.39314112579027 \approx t*\log\left(0.86\right)
-0.39314112579027 \approx t*\left(-0.06550154875643\right)
\frac{-0.39314112579027}{-0.06550154875643} \approx t
6.0020126738099 \approx t
t \approx 6.0020126738099
which rounds to 6 when rounding to the nearest whole number
So it takes roughly 6 years for the value to go from $900 to $364