Respuesta :
Answer:
The correct option is 4.
Step-by-step explanation:
90°counterclockwise about the origin is a rigid transformation. It means the measure of corresponding sides of image and preimage are same.
[tex]AB=A'B',BC=B'C',CD=C'D',AD=A'D'[/tex]
Distance formula:
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
The measure of all sides are
[tex]AB=A'B'=\sqrt{(4-0)^2+(-3+4)^2}=\sqrt{17}[/tex]
[tex]BC=B'C'=\sqrt{(5-4)^2+(-6+3)^2}=\sqrt{10}[/tex]
[tex]CD=C'D'=\sqrt{(1-5)^2+(-7+6)^2}=\sqrt{17}[/tex]
[tex]AD=A'D'=\sqrt{(1-0)^2+(-7+4)^2}=\sqrt{10}[/tex]
Since A'B' = √17 gives the correct measure of an image of one of its sides, therefore correct option is 4.