Respuesta :
Try this solution. Basic steps marked by '·'
You may simplify the answer.
You may simplify the answer.

The solution to the boundary value problem: d²y/dt² - 7dy/dt + 10y = 0, y(0)=6,y(1)=3 is y = {(6[tex]e^{5}[/tex] - 3)/([tex]e^{5}[/tex] - [tex]e^{2}[/tex])}[tex]e^{2x}[/tex] + {(3 - 6)/([tex]e^{5}[/tex] - [tex]e^{2}[/tex])} [tex]e^{5x}[/tex].
What is the boundary value problem?
A boundary value problem represents a system of ordinary differential equations that has solution and derivative values mentioned at multiple points.
d²y/dt² - 7dy/dt + 10y = 0
Let, d²/dt² = D², d/dt = D.
Then, D²y - 7Dy + 10y = 0
⇒ y(D² -7D + 10) = 0
⇒ (D² -7D + 10) = 0
⇒ (D² -5D - 2D + 10) = 0
⇒ D(D - 5) - 2(D - 5) = 0
⇒ (D - 5)(D - 2) = 0
⇒ D = 2, 5
Therefore, y = C₁ [tex]e^{(D1) x}[/tex] + C₂ [tex]e^{(D2)x}[/tex]
y = C₁ [tex]e^{2x}[/tex] + C₂[tex]e^{5x}[/tex]
Putting the values of y, we get:
C₁ [tex]e^{0}[/tex] + C₂[tex]e^{0}[/tex] = 6
C₁ + C₂ = 6 ------(1)
Similarly,
C₁ [tex]e^{2}[/tex] + C₂[tex]e^{5}[/tex] = 3
⇒ C₁ + C₂[tex]e^{3}[/tex] = 3/[tex]e^{2}[/tex]-----(2)
Solving equation (1) and (2), we get:
C₁ = [6[tex]e^{5}[/tex] - 3]/[[tex]e^{5}[/tex] - [tex]e^{2}[/tex]]
C₂ = [3 - 6[tex]e^{2}[/tex]]/[[tex]e^{5}[/tex] - [tex]e^{2}[/tex]]
Hence, y = {(6[tex]e^{5}[/tex] - 3)/([tex]e^{5}[/tex] - [tex]e^{2}[/tex])}[tex]e^{2x}[/tex] + {(3 - 6)/([tex]e^{5}[/tex] - [tex]e^{2}[/tex])} [tex]e^{5x}[/tex]
Learn more about boundary value problems here: https://brainly.com/question/16735055
#Tag #SPJ2