Respuesta :

Try this solution. Basic steps marked by '·'
You may simplify the answer.
Ver imagen evgeniylevi

The solution to the boundary value problem: d²y/dt² - 7dy/dt + 10y = 0, y(0)=6,y(1)=3 is y = {(6[tex]e^{5}[/tex] - 3)/([tex]e^{5}[/tex] - [tex]e^{2}[/tex])}[tex]e^{2x}[/tex] + {(3 - 6)/([tex]e^{5}[/tex]  - [tex]e^{2}[/tex])}  [tex]e^{5x}[/tex].

What is the boundary value problem?

A boundary value problem represents a system of ordinary differential equations that has solution and derivative values mentioned at multiple points.

d²y/dt² - 7dy/dt + 10y = 0

Let, d²/dt² = D², d/dt = D.

Then, D²y - 7Dy + 10y =  0

⇒ y(D² -7D + 10) = 0

⇒ (D² -7D + 10) = 0

⇒ (D² -5D - 2D + 10) = 0

⇒ D(D - 5) - 2(D - 5) = 0

⇒ (D - 5)(D - 2) = 0

⇒ D = 2, 5

Therefore, y = C₁ [tex]e^{(D1) x}[/tex] + C₂ [tex]e^{(D2)x}[/tex]

y = C₁ [tex]e^{2x}[/tex] + C₂[tex]e^{5x}[/tex]

Putting the values of y, we get:

C₁ [tex]e^{0}[/tex] + C₂[tex]e^{0}[/tex] = 6

C₁ + C₂ = 6 ------(1)

Similarly,

C₁ [tex]e^{2}[/tex] + C₂[tex]e^{5}[/tex] = 3

⇒ C₁ + C₂[tex]e^{3}[/tex] = 3/[tex]e^{2}[/tex]-----(2)

Solving equation (1) and (2), we get:

C₁ = [6[tex]e^{5}[/tex] - 3]/[[tex]e^{5}[/tex] - [tex]e^{2}[/tex]]

C₂ = [3 - 6[tex]e^{2}[/tex]]/[[tex]e^{5}[/tex]  - [tex]e^{2}[/tex]]

Hence, y = {(6[tex]e^{5}[/tex] - 3)/([tex]e^{5}[/tex] - [tex]e^{2}[/tex])}[tex]e^{2x}[/tex] + {(3 - 6)/([tex]e^{5}[/tex]  - [tex]e^{2}[/tex])}  [tex]e^{5x}[/tex]

Learn more about boundary value problems here: https://brainly.com/question/16735055

#Tag #SPJ2

ACCESS MORE